这道题以二叉搜索树为背景,有点像最优矩阵链乘的问题:
设f[i][j] 表示元素i到元素j的最优解,设k为i到j元素所形成二叉树的根,则有f[i][j] = min{f[i][k-1]+f[k+1][j]+sum[i][j]-a[k]},这里sum[i][j]为i到j的查找频率之和,a[k]为root的查找频率,因此我们要求所有元素的前缀和,为什么要加sum[i][j]-a[k];因为我们每加一层,相当于加了sum[i][j]-a[k];
代码如下;
#include<stdio.h> #include<string.h> #define MAXN 260 #define INF 1000000000 int N, d[MAXN], f[MAXN][MAXN], a[MAXN], A[MAXN]; void init() { int i, j; for(i = 1; i <= N; i ++) scanf("%d",&a[i]); A[0] = 0; for(i = 1; i <= N; i ++) A[i] = A[i-1] + a[i]; } void solve() { int i, j, k, temp; for(i = 1; i <= N; i ++) f[i][i-1] = f[i+1][i] = 0; for(i = 1; i <= N; i ++) for(j = i; j <= N; j ++) f[i][j] = INF; for(k = 0; k < N; k ++) for(i = 1; i + k <= N; i ++) for(j = i; j <= i+k; j ++) { temp = f[i][j - 1] + f[j+1][i+k]+A[i+k]-A[i-1]-a[j]; if(temp < f[i][i+k]) f[i][i+k] = temp; } printf("%d\n",f[1][N]); } int main() { while(scanf("%d",&N) == 1) { init(); solve(); } return 0; }