UVA 10304 - Optimal Binary Search Tree

这道题以二叉搜索树为背景,有点像最优矩阵链乘的问题:

设f[i][j] 表示元素i到元素j的最优解,设k为i到j元素所形成二叉树的根,则有f[i][j] = min{f[i][k-1]+f[k+1][j]+sum[i][j]-a[k]},这里sum[i][j]为i到j的查找频率之和,a[k]为root的查找频率,因此我们要求所有元素的前缀和,为什么要加sum[i][j]-a[k];因为我们每加一层,相当于加了sum[i][j]-a[k];

代码如下;

#include<stdio.h>
#include<string.h>
#define MAXN 260
#define INF 1000000000
int N, d[MAXN], f[MAXN][MAXN], a[MAXN], A[MAXN];
void init()
{
    int i, j;
    for(i = 1; i <= N; i ++)
        scanf("%d",&a[i]);
        A[0] = 0;
        for(i = 1; i <= N; i ++)
            A[i] = A[i-1] + a[i];
}
void solve()
{
    int i, j, k, temp;
    for(i = 1; i <= N; i ++)
        f[i][i-1] = f[i+1][i] = 0;
    for(i = 1; i <= N; i ++)
        for(j = i; j <= N; j ++)
            f[i][j] = INF;
    for(k = 0; k < N; k ++)
        for(i = 1; i + k <= N; i ++)
            for(j = i; j <= i+k; j ++)
            {
                temp = f[i][j - 1] + f[j+1][i+k]+A[i+k]-A[i-1]-a[j];
                if(temp < f[i][i+k])
                    f[i][i+k] = temp;
            }
        printf("%d\n",f[1][N]);
}
int main()
{
    while(scanf("%d",&N) == 1)
    {
        init();
        solve();
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值