numpy中的np.where

这篇博客详细介绍了numpy的np.where函数,包括三个参数完整的情况和仅提供condition参数的情况。通过实例解析了np.where如何根据条件选择数组中的值,并展示了如何筛选和获取符合条件的元素及其位置信息。此外,还探讨了np.where在实际工作中的其他常见用法,如大小判断和元素是否在列表中的检查。
摘要由CSDN通过智能技术生成

numpy中的np.where

先来看下相关的说明 : np.where(condition, [x, y]),这里三个参数,其中必写参数是condition(判断条件),后边的x和y是可选参数.那么这三个参数都有怎样的要求呢?
condition:array_like,bool ,当为True时,产生x,否则产生y
简单说,对第一个参数的要求是这样的,首先是数据类型的要求,类似于数组或者布尔值,当判断条件为真时返回x中的值,否则返回y中的值
x,y:array_like,可选,要从中选择的值。 xycondition需要可广播到某种形状
x和y是可选参数,并且对这两个参数的数据类型要求只有类似数组这一条,当条件判断为true或者false时从这两个类似数组的容器中取数.
还有很重要的一点就是对三个参数的要求是都可以广播,也就是说对参数的形状做出了要求,对condition来说,是布尔值的时候无所谓形状,当时类似数组的容器时,与x和y的形状需要满足可广播的条件.
OK,前边的纯文字讲解到此结束,下边,通过例子来直观感受下.容我偷个懒,直接用了帮助文档中的例子:

情况一 : 三个参数完整

np.where([[True, False], [True, True]],
         [[1, 2], [3, 4]],
         [[9, 8], [7, 6]])

返回值:

array([[1, 8],
       [3, 4]])

来看一下这个结果是怎么产生的.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>