树链剖分

关于树链剖分
【懒得用手写所以直接在电脑上打了】
•用处:
Q:在一棵树上进行路径的修改、求极值、求和
如果对树上的边进行编号,然后就变成对区间的操作了。就可以利用一些数据结构(如线段树等进行操作)而如何进行编号使得用线段树处理地尽量高效,就可以利用树链剖分来解决了。【所以树链剖分一般是作为一些数据结构的预处理出现的……吧】
•有重链剖分和长链剖分两种。
长链剖分考的好像不是很多(但SCOI2017考了简直。。。)所以先暂时搁置在那,有时间再回来看【又立了一个flag】
•关于重链剖分:
•一些基础概念
重边和重儿子:
定义siz[x]为以x为根的子树节点个数,令v为u的儿子中siz值最大的节点,则v就是u的重儿子(若有多个时就任选一个),边(u,v)就是重边,其余边为轻边。
重边的性质:
(1)轻边(u,v)中,siz[v]<=siz[u/2]
(2)从根到某一点的路径上,不超过logn条轻边和不超过logn条重边

重链
重链:重边组成的链
而对于每个非重儿子,以它为根节点,又可访问出一个新的重链
这样可以证明每个点到根节点的路径上最多经过logN条重边和logN条轻边[怎么证] 所以保证了算法的高效性

看到一句话 其实树链剖分就是把边哈希到线段树上的数据结构。
【然而还是不太理解】

具体实现
//目前只写了求LCA(毕竟太弱了)
等晚上来再补题吧 flag++;

//树链剖分求LCA 
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

const int N = 10000+10;

int n,q;
int tot=0,head[N<<1];

struct node{
    int pre,v;
}edge[N<<1];

void adde(int from,int to){
    tot++;
    edge[tot].pre=head[from];
    edge[tot].v=to;
    head[from]=tot;
}

//关于链剖部分

int fa[N],dep[N];
int son[N],siz[N];

void dfs1(int u,int f,int d){
    dep[u]=d;fa[u]=f;
    siz[u]=1;
    for(int i=head[u];i;i=edge[i].pre){
        int v=edge[i].v;
        if(v==f) continue;
        dfs1(v,u,d+1);
        siz[u]+=siz[v];
        if(son[u]==-1||siz[son[u]]<siz[v]){
            son[u]=v;
        }
    }
}

int top[N],tag[N],seq[N];
int index=0;

void dfs2(int u,int tp){
    top[u]=tp;
    index++;tag[u]=index;seq[index]=u;
    if(son[u]==-1) return ;
    dfs2(son[u],tp);
    for(int i=head[u];i;i=edge[i].pre){
        int v=edge[i].v;
        if(v==son[u]||v==fa[u]) continue;
        dfs2(v,v);
    }
}

int lca(int a, int b){
    while (1){
        if (top[a] == top[b]){
          if(dep[a]<=dep[b]) return a;
          else return b;
        }
        else if (dep[top[a]] >= dep[top[b]]) 
        a = fa[top[a]]; 
        else b = fa[top[b]];
    }
}

int main(){
    scanf("%d",&n);
    memset(son,-1,sizeof(son));
    for(int i=1;i<n;i++){
        int u,v;
        scanf("%d%d",&u,&v);
        adde(u,v);
        adde(v,u);
    }
    dfs1(1,0,1);dfs2(1,1);
//  for(int i=1;i<=n;i++) printf("%d ",dep[i]);
    scanf("%d",&q);
    while(q--){
        int u,v;
        scanf("%d%d",&u,&v);
        printf("%d\n",lca(u,v));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值