OCR识别常见开源库

OCR (Optical Character Recognition,光学字符识别)技术是一种将印刷体或手写文字转化为可编辑文本的技术。亦即将图像中的文字进行识别,并以文本的形式返回。做OCR有很多库可以使用。免费开源库有:Tesseract,PaddleOCR。商业付费OCR有:腾讯云OCR,阿里云OCR。下面分别介绍。

准确识别的前提是找到正确的字体进行训练,字体很重要,要覆盖所有识别的场景。
在这里插入图片描述

Tesseract

Tesseract的GitHub网址:https://github.com/tesseract-ocr/tesseract
在这里插入图片描述

新建系统变量

我的电脑点击右键,属性,高级系统设置,环境变量,系统变量里面,新建一个TESSDATA_PREFIX变量名,路径就是tessdata文件夹的路径地址。如:D:\tessdata。

Python环境配置

pip install pytesseract
pip install matplotlib

测试代码

运行测试代码,使用Pillow读取图像

import pytesseract
from PIL import Image
import matplotlib.pyplot as plt

srcImage = Image.open('./pic/t1.jpg')
plt.imshow(srcImage)
plt.show()
text = pytesseract.image_to_string(srcImage, lang='eng')
print(text)

运行测试代码,使用OpenCV读取图像

import pytesseract
import cv2 as cv

srcImage = cv.imread('./pic/t7.jpg')
grayImage = cv.cvtColor(srcImage, cv.COLOR_BGR2GRAY)
thresh, binaryImage = cv.threshold(grayImage,0, 255, cv.THRESH_BINARY|cv.THRESH_OTSU)
blurImage = cv.GaussianBlur(binaryImage, (5, 5),3)
cv.imshow('blurImage',blurImage)
text = pytesseract.image_to_string(blurImage, lang='eng')
print(text)

cv.waitKey(0)
cv.destroyAllWindows()

VS环境配置

Tesseract的GitHub网址:https://github.com/tesseract-ocr/tesseract
在Windows下Visual Studio 调用,要先配置环境。官方有3种方法:https://tesseract-ocr.github.io/tessdoc/Compiling.html
CMake:https://cmake.org/,SW:https://software-network.org/,Vcpkg:

### 回答1: OCR(Optical Character Recognition,光学字符识别)是一种将印刷体字符转换成机器可编辑文本形式的技术。OCR 文字识别源码指的是用于实现 OCR 功能的程序代码。以下是一个关于 C 语言实现 OCR 文字识别的简要说明。 首先,C 语言是一种广泛应用于系统开发的编程语言,它拥有高效性、跨平台性以及强大的底层控制能力,适合用于编写源代码。要实现 OCR 文字识别功能,我们可以使用 C 语言结合相关的图像处理库或者人工智能库。 在实现 OCR 文字识别功能时,主要的步骤包括图像预处理、字符分割和字符识别。首先,需要将待识别的图像进行预处理,例如灰度化、二值化、噪声去除、图像增强等操作,以提高字符区域的清晰度和可识别性。然后,对预处理后的图像进行字符分割,将每个字符从图像中分割出来,形成单独的字符图像。最后,借助机器学习和模式识别算法,通过训练模型将字符图像与对应的字符进行匹配,实现字符识别的功能。 在进行图像预处理、字符分割和字符识别时,我们可以使用一些开源的图像处理库和机器学习库,例如OpenCV、Tesseract等,它们提供了一系列的函数和算法,可用于图像处理和特征提取。同时,我们可以根据具体需求选择适合的机器学习算法,如神经网络、支持向量机、决策树等,以实现准确的字符识别效果。 综上所述,实现 OCR 文字识别源码需要结合 C 语言和相关的图像处理库和机器学习库,通过图像预处理、字符分割和字符识别等步骤,可以实现将印刷体字符转换成可编辑文本的功能。 ### 回答2: OCR(Optical Character Recognition,光学字符识别)是一种将图片或扫描的文本转化为可编辑、可搜索的电子文本的技术。OCR 文字识别源码是指实现这种技术的程序代码。 OCR 文字识别源码通常基于计算机视觉和机器学习算法。它通过分析图像的像素构成和排列方式,将文字的形状、大小以及位置等特征提取出来。然后,通过匹配这些特征与已知字符的特征,识别出输入图像中的文字。 一个完整的 OCR 文字识别源码需要包括以下几个关键步骤: 1. 图像预处理:对输入的图像进行去噪、灰度化、二值化等处理,将图像转化为更适合字符分析的形式。 2. 字符分割:将处理后的图像中的字符分割出来,以便逐个识别。 3. 特征提取:对每个分割出来的字符提取其独特的特征,如轮廓、颜色等。 4. 字符识别:将提取出的特征与已知字符的特征进行匹配,以识别出输入图像中的字符。 5. 结果输出:将识别结果输出为可编辑或可搜索的文本格式。 当然,实现一个准确、高效的 OCR 文字识别源码并不简单,因为面临着多种挑战,如图像质量、字符字体和大小变化、文字横向倾斜等。因此,开发者需要综合运用图像处理、模式识别、机器学习等领域的知识来提高准确率和性能。 目前,已经有一些开源OCR文字识别源码可供使用,如Google的Tesseract OCROpenCV等。开发者可以借助这些源码,快速实现自己的OCR文字识别应用,如扫描文档的文字提取、车牌识别等。 总之,OCR 文字识别源码是实现文字识别技术的程序代码,通过图像处理和机器学习算法,能够将图像中的文字转化为可编辑、可搜索的文本。开发者可以借助现有的开源源码来实现自己的OCR文字识别应用。 ### 回答3: OCR(Optical Character Recognition,光学字符识别)是一种将印刷文字转换为可编辑电子文档的技术。OCR 文字识别源码是指用于实现OCR技术的程序代码。 源码通常由一系列算法和模型构成,用于识别并提取图像中的文字内容。OCR源码的实现过程包括以下几个关键步骤: 1. 图像预处理:对待处理图像进行灰度化、二值化、降噪等操作,以便更好地提取文字。 2. 文字定位:通过图像处理技术找到图像中的文字区域,确定文字的相对位置。 3. 字符分割:对文字区域进行切割,将整个文字区域切割成单个字符的图像。 4. 特征提取:对每个字符的图像进行特征提取,并将其转换为计算机可以理解的数字表示形式。 5. 文字识别:利用训练好的OCR模型,对提取出的字符特征进行识别,得到最终的文本结果。 常见OCR文字识别源码有Tesseract、OpenCV、Pytesseract等。这些源码开源且广泛使用,可以根据实际需求进行自定义修改和优化。 OCR文字识别源码在很多领域有广泛应用,如数字化档案管理、自动车牌识别、印刷品扫描等。通过将图像中的文字转换为可编辑的文本,极大地提高了文字信息的利用效率和便捷程度。 当然,OCR技术也面临一些挑战,如字体、字号、倾斜度、光照条件等因素的影响,可能会降低识别的准确性。因此,在实际应用中,可能需要进一步优化和调整OCR源码,以提高识别的精度和稳定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值