1127. ZigZagging on a Tree (30)
Suppose that all the keys in a binary tree are distinct positive integers. A unique binary tree can be determined by a given pair of postorder and inorder traversal sequences. And it is a simple standard routine to print the numbers in level-order. However, if you think the problem is too simple, then you are too naive. This time you are supposed to print the numbers in "zigzagging order" -- that is, starting from the root, print the numbers level-by-level, alternating between left to right and right to left. For example, for the following tree you must output: 1 11 5 8 17 12 20 15.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<= 30), the total number of nodes in the binary tree. The second line gives the inorder sequence and the third line gives the postorder sequence. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the zigzagging sequence of the tree in a line. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:8 12 11 20 17 1 15 8 5 12 20 17 11 15 8 5 1Sample Output:
1 11 5 8 17 12 20 15
建过100次的树没啥可说的。感觉自己的输出有点麻烦,应该有更简单的方法。随后在看看
#include <iostream> #include<stdio.h> #include<queue> #include<algorithm> #include<vector> #include<string> #include<string.h> #include<set> #include<deque> #include<queue> using namespace std; struct { int lc=-1; int rc=-1; int value; }node[50]; int p=0; int a[50],b[50]; int buildtree(int h1,int t1,int h2,int t2) { if(h1>t1) return -1; if(h1==t1) { node[p].lc=node[p].rc=-1; node[p++].value=a[h1]; return p-1; } int pp=h1; while(a[pp]!=b[t2]) pp++; int x=buildtree(h1,pp-1,h2,h2+pp-h1-1); int y=buildtree(pp+1,t1,h2+pp-h1,t2-1); node[p].lc=x; node[p].rc=y; node[p++].value=b[t2]; return p-1; } void levelorder(int sta) { deque<int> Q; Q.push_back(sta); int flag=0; int kongge=0; int p1=0,p2=1; while(!Q.empty()) { int tmp; if(flag==1) { tmp=Q.front(); Q.pop_front(); } else { tmp=Q.back(); Q.pop_back(); } if(kongge==1) cout<<' '; kongge=1; p1++; cout<<node[tmp].value; if(flag==1) { if(node[tmp].lc!=-1) Q.push_back(node[tmp].lc); if(node[tmp].rc!=-1) Q.push_back(node[tmp].rc); } else { if(node[tmp].rc!=-1) Q.push_front(node[tmp].rc); if(node[tmp].lc!=-1) Q.push_front(node[tmp].lc); } if(p1==p2) { flag=(flag+1)%2; p2=Q.size(); p1=0; } } } int main() { int n; cin>>n; for(int i=0;i<n;i++) cin>>a[i]; for(int i=0;i<n;i++) cin>>b[i]; int start=buildtree(0,n-1,0,n-1); levelorder(start); return 0; }