Identity mapping(恒等映射)在数学和深度学习中都有不同的含义,但核心思想是相同的,即:输入与输出相同。
1. 数学中的恒等映射
2. 深度学习中的恒等映射
在深度学习中,恒等映射的概念通常与**残差网络(Residual Networks, ResNet)**有关。ResNet 是一种深层神经网络架构,旨在解决随着网络深度增加而出现的梯度消失和梯度爆炸问题。恒等映射在这种架构中起到了关键作用。
残差块与恒等映射
-
残差块:在 ResNet 中,残差块(Residual Block)是基本构建单元。在这个块中,输入 (x) 通过一系列层(如卷积层、ReLU激活函数)得到一个输出 (F(x)),然后输入 (x) 跳过这些层直接加到输出上:
这里,(F(x)) 是一个子网络的输出,而 (x) 是输入。将输入 (x) 直接加到输出上(即“跳跃连接”)就是恒等映射的体现。
-
恒等映射的作用:这种设计确保了即使在多层网络中也能有效地将输入信息传递到输出层。如果残差块中的变换 (F(x)) 被训练为接近零,那么残差块的输出 (y) 将接近输入 (x),这就是恒等映射的效果。这种机制帮助网络在训练时更容易保留梯度,并防止梯度消失或爆炸的问题。
恒等映射的好处
-
缓解退化问题:随着网络层数增加,简单堆叠层数可能导致训练效果下降(退化问题)。恒等映射使得即使增加网络深度,也可以保留较浅层网络的性能。
-
简化梯度传播:在梯度下降时,恒等映射提供了梯度的直接路径,允许梯度更有效地传播到前面的层,促进更深网络的训练。
总结
Identity mapping(恒等映射) 是一个将输入直接传递给输出的映射。在深度学习中,特别是在残差网络中,恒等映射通过跳跃连接的方式,将输入直接加到输出上,从而缓解了梯度消失或爆炸的问题,并帮助深层网络更好地训练。