伪代码
把所有边排序,记第i小的边为e[i] (1<=i<m)
初始化MST为空
初始化连通分量,让每个点自成一个独立的连通分量
for(int i=0;i<m;i++)
if(e[i].u和e[i].v不再同一个连通分量)
{
把边e[i]加入MST
合并e[i].u和e[i].v所在的连通分量
}
假设第i条边的两个端点序号和权值分别保存在u[i],v[i]和w[i]中,而排序后第i小的边的序号保存在r[i]中(这叫做间接排序。排序的关键字是对象的“代号”,而不是对象本身)。
int cmp(const int i,const int j)
{//间接排序函数
return w[i]<w[j];
}
int find(int x)
{//并查集的find
return p[x] == x ? x:p[x] = find(p[x]);
}
int kruskal()
{
int ans=0;
for(int i=0; i<n; i++)
{
p[i]=i;//初始化并查集
}
for(int i=0; i<m; i++)
{
r[i]=i;初始化边序号
}
sort(r,r+m,cmp);//给边排序
for(int i=0; i<m; i++)
{
int e=r[i];
int x=find(u[e]);
int y=find(v[e]);
//找出当前边两个端点所在集合编号
if(x!=y)
{
ans+=w[e];
p[x]=y;
}//如果在不同集合,合并
}
return ans;
}
x和y分别是第e条边的两个端点所在连通分量的代表元。合并x和y所在集合可以简单地写成p[x]=y,即直接把x作为y的子节点,则两个树就合并成一棵树了。注意不能写成p[u[e]]=p[v[e]],因为u[e]和v[e]不一定是树根。并查集的效率非常高,在平摊意义下,find函数的时间复杂度几乎可以看成是常数(而union显然是常数时间)。