卷积神经网络CNN是用于设计人工材料的另一种人工神经网络(ANN)。生成的数据被传递到输入层,输入层连接到隐藏层,隐藏层也称为卷积层、池化层、全连接层和归一化层。如图二。Donda等人将CNN应用于设计超薄声学吸收超表面以实现声音吸收。通过应用卷积过程,从输入超表面数据中提取特征,并将其传递到池化层进行特征选择和过滤。通过重复这个过程,输出样本由全连接层的神经元获得。
卷积神经网络CNN是用于设计人工材料的另一种人工神经网络(ANN)。生成的数据被传递到输入层,输入层连接到隐藏层,隐藏层也称为卷积层、池化层、全连接层和归一化层。如图二。Donda等人将CNN应用于设计超薄声学吸收超表面以实现声音吸收。通过应用卷积过程,从输入超表面数据中提取特征,并将其传递到池化层进行特征选择和过滤。通过重复这个过程,输出样本由全连接层的神经元获得。