声子晶体和超材料中的机器学习和深度学习—2022年综述(2)

卷积神经网络CNN是用于设计人工材料的另一种人工神经网络(ANN)。生成的数据被传递到输入层,输入层连接到隐藏层,隐藏层也称为卷积层、池化层、全连接层和归一化层。如图二。Donda等人将CNN应用于设计超薄声学吸收超表面以实现声音吸收。通过应用卷积过程,从输入超表面数据中提取特征,并将其传递到池化层进行特征选择和过滤。通过重复这个过程,输出样本由全连接层的神经元获得

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值