声子晶体和超材料中的机器学习和深度学习—2022年综述(3)

       强化学习网络基于环境交互的原理工作。它由三部分组成,即智能体、环境和奖励,见图6。当前状态的新值基于奖励值存储在系统中。奖励过程促使智能体执行更好的动作,从而提高网络的准确性。目前,Q-learning和SARSA 是这种学习过程中使用的两种主要算法。在这里,Q函数是状态值,奖励存储在Q表中。这两种算法的主要区别在于Q表中奖励的存储机制。Q-learning算法基于下一个动作(同策略学习)存储Q值,而SARSA通过选择当前动作(异策略学习)来更新它。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值