强化学习网络基于环境交互的原理工作。它由三部分组成,即智能体、环境和奖励,见图6。当前状态的新值基于奖励值存储在系统中。奖励过程促使智能体执行更好的动作,从而提高网络的准确性。目前,Q-learning和SARSA 是这种学习过程中使用的两种主要算法。在这里,Q函数是状态值,奖励存储在Q表中。这两种算法的主要区别在于Q表中奖励的存储机制。Q-learning算法基于下一个动作(同策略学习)存储Q值,而SARSA通过选择当前动作(异策略学习)来更新它。
声子晶体和超材料中的机器学习和深度学习—2022年综述(3)
最新推荐文章于 2025-04-26 09:29:57 发布