具有独特微观结构的机械超材料在刚度、韧性、隔振和热膨胀等物理特性方面表现出色。同时,生物体或地理中的元结构之所以能在复杂工况下高效运行,得益于其自然进化的微观结构的异质性和梯度分布,这种分布很难通过正向设计获得。本文提出了一种满足微观结构不同设计性能要求的多网络深度学习系统,该系统能够以99.09%的准确率预测配置。该系统利用颜色空间与机械参数空间之间的类比关系,将参数化设计转化为像素匹配。微观结构通过增材制造(AM)制备,并通过数字图像相关(DIC)实验验证其性能(结构性能误差小于2%)。实现了多功能和梯度机械超材料的多尺度逆设计,特别关注仿生结构的自动定制。该设计流程仅需2秒,并考虑了
用于梯度力学超材料逆向设计的深度学习方法 论文阅读
最新推荐文章于 2025-05-29 16:31:56 发布