【负荷预测】基于BP神经网络的负荷预测研究(Python代码实现)

                                💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于BP神经网络的负荷预测研究

一、引言

负荷预测是电力系统规划和运行中的关键环节,它对于保障电力供应的稳定性、经济性和可靠性具有重要意义。BP(Back Propagation)神经网络作为一种经典的人工神经网络模型,以其强大的非线性映射能力和自学习能力,在负荷预测领域得到了广泛应用。本文旨在探讨基于BP神经网络的负荷预测方法,通过构建BP神经网络模型,实现对电力负荷的准确预测。

二、BP神经网络原理

BP神经网络是一种多层前馈神经网络,其学习过程由信号的正向传播与误差的反向传播两个过程组成。在正向传播过程中,输入信号从输入层经隐藏层逐层处理,最终传向输出层。若输出层的实际输出与期望输出不符,则转入误差的反向传播阶段。误差信号沿原来的连接通路返回,通过修改各层神经元的权值和阈值,使误差信号最小。经过反复学习训练,BP神经网络能够学习到输入与输出之间的映射关系,从而实现对未知数据的预测。

三、基于BP神经网络的负荷预测模型构建

  1. 数据收集与预处理

    • 收集历史电力负荷数据及相关影响因素数据(如天气、节假日、经济指标等)。
    • 对数据进行清洗,去除异常值和缺失值。对于缺失值,可以采用插值法、均值填补法等方法进行填充。
    • 对数据进行归一化处理,将负荷数据缩放到同一量级,以提高模型训练的收敛速度和稳定性。
  2. 特征选择与输入层设计

    • 根据历史负荷数据和影响因素数据,选择合适的特征作为模型的输入。常见的特征包括历史负荷值、天气指标(如温度、湿度等)、节假日标志等。
    • 确定输入层的神经元个数,通常与输入特征的数量相等。
  3. 隐藏层设计

    • 隐藏层的层数和神经元个数对BP神经网络的性能有重要影响。一般来说,增加隐藏层的层数和神经元个数可以提高模型的非线性映射能力,但也会增加模型的复杂度和训练时间。
    • 可以通过试凑法、经验公式或遗传算法等方法来确定隐藏层的层数和神经元个数。
  4. 输出层设计

    • 输出层神经元个数通常与预测目标的维度相等。在负荷预测中,输出层一般只有一个神经元,表示预测的负荷值。
  5. 激活函数与损失函数选择

    • 激活函数用于引入非线性因素,常见的激活函数有Sigmoid函数、Tanh函数和ReLU函数等。在BP神经网络中,隐藏层通常采用Sigmoid函数或Tanh函数,输出层则根据预测目标的不同选择合适的激活函数。
    • 损失函数用于衡量模型预测值与实际值之间的差异,常见的损失函数有均方误差(MSE)、平均绝对误差(MAE)等。在负荷预测中,通常采用MSE作为损失函数。
  6. 模型训练与优化

    • 使用训练集数据对BP神经网络进行训练,通过反向传播算法调整网络参数(如权值和阈值),以最小化损失函数。
    • 在训练过程中,可以采用学习率衰减、动量项、早停法等策略来防止过拟合和提高训练效率。
    • 可以通过交叉验证等方法来评估模型的泛化能力,并根据评估结果对模型进行优化。

四、实验结果与分析

通过实验验证,基于BP神经网络的负荷预测模型在电力负荷预测中表现出了较高的准确性和稳定性。与传统的时间序列分析方法和其他机器学习算法相比,BP神经网络模型能够更好地捕捉负荷数据中的非线性关系和动态变化特性,从而提高预测精度。同时,BP神经网络模型还具有一定的抗干扰能力和泛化能力,能够在一定程度上缓解数据噪声和异常值对预测结果的影响。

五、结论与展望

本文提出了一种基于BP神经网络的电力负荷预测方法,并通过实验验证了其有效性和可行性。未来研究可以进一步探索BP神经网络结构的优化方法、多源数据融合技术以及与其他先进算法的结合应用,以进一步提高负荷预测的精度和鲁棒性。同时,随着智能电网和大数据技术的不断发展,基于BP神经网络的负荷预测方法将在电力系统中发挥更加重要的作用。

📚2 运行结果

部分代码:

# 初始化存储各个评估指标的字典。
table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.

[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.

[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.

[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024. 

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值