💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
一、模型核心模块解析
1. EEMD(集合经验模态分解)
基本原理
EEMD通过向原始信号x(t)x(t)添加高斯白噪声ni(t)ni(t)生成多个扰动信号xi(t)=x(t)+ni(t)xi(t)=x(t)+ni(t),并对每个扰动信号进行EMD分解,最终对多次分解的IMF分量进行集合平均,以抑制模态混叠问题。其核心公式为:
优势与作用
- 抗模态混叠:通过噪声统计特性平衡信号极值分布,解决传统EMD的模态混叠问题。
- 自适应分解:适用于非线性、非平稳信号(如轴承振动、发动机转速信号)的分解,提取物理意义明确的IMF分量。
- 应用案例:在发动机失火故障检测中,EEMD成功从曲轴转速信号中分离出故障特征IMF,准确识别失火时刻。
2. MPE(多尺度排列熵)
定义与计算
MPE通过粗粒化处理将时间序列映射到不同尺度ττ,计算各尺度下的排列熵以量化序列复杂度:
作用与优势
- 多尺度特征提取:捕捉信号在不同时间尺度下的复杂度差异,如轴承故障信号的高频冲击成分与低频背景噪声。
- 噪声抑制:通过熵值阈值区分噪声与有效信号(建议阈值0.55-0.60)。
- 应用案例:在涡旋压缩机故障诊断中,MPE有效区分轴承松动(高熵值)与转子不平衡(低熵值)故障。
3. KPCA(核主元分析)
数学基础
KPCA通过核函数ϕ(⋅)ϕ(⋅)将数据映射至高维空间,在高维空间中执行PCA:
通过核技巧(如多项式核、高斯核)避免显式计算ϕ(x),直接求解核矩阵K(x,y)的特征值问题。
作用与优势
- 非线性特征提取:处理工业数据中的非线性关系,提取低维主元(如砂铸缺陷检测中累计方差贡献达93.2%)。
- 降维与去噪:通过保留主成分降低数据维度,同时抑制噪声干扰。
4. BiLSTM(双向长短期记忆网络)
结构与原理
BiLSTM由正向和反向LSTM层组成,分别处理序列的过去与未来信息,输出为两方向隐藏状态的拼接:
通过遗忘门、输入门、输出门控制信息流动,解决梯度消失问题。
优势与作用
- 时序建模:捕捉故障信号的长期依赖关系,如充电桩电能表误差估计中自相关特性的挖掘。
- 高鲁棒性:在合成数据测试中,BiLSTM的均方误差(MSE)显著低于单向LSTM。
二、模型协同工作流程
- 信号分解:EEMD将原始信号分解为若干IMF分量,抑制模态混叠。
- 特征提取:计算各IMF的MPE值,构建多尺度特征矩阵。
- 降维处理:KPCA对高维特征矩阵进行非线性降维,提取关键故障特征。
- 分类诊断:BiLSTM对降维后的特征进行时序建模,输出故障类别概率。
流程示例:
轴承振动信号→EEMD分解→IMF分量→MPE多尺度熵计算→KPCA降维→BiLSTM分类→故障类型输出。
三、工业应用场景与性能对比
1. 典型应用场景
- 发电机组故障诊断:通过振动信号分析实现健康管理、预测性维护。
- 注塑机预测性维护:融合多传感器数据,降低非计划停机风险(如美的工厂案例)。
- 轴承与齿轮故障检测:在噪声环境下准确识别早期故障。
2. 性能对比数据
模型 | 准确率 | RMSE | F1 Score |
---|---|---|---|
EEMD-MPE-KPCA-BiLSTM | 99.6% | 0.62 | 98.7% |
EMD-SVM | 92.3% | 1.25 | 89.5% |
CNN-LSTM | 96.8% | 0.89 | 95.2% |
(注:数据参考自混合模型对比研究) | |||
| |||
|
四、创新性与挑战
创新性
- 多技术融合:结合信号分解、非线性特征提取与双向时序建模,全面应对工业数据的非平稳、非线性特性。
- 端到端诊断:从原始信号到故障分类的全自动化流程,减少人工干预。
挑战
- 计算复杂度:EEMD和MPE的多次迭代计算需优化效率。
- 参数敏感性:MPE的尺度选择、BiLSTM的超参数调优需结合领域知识。
五、结论
EEMD-MPE-KPCA-BiLSTM模型通过多阶段特征处理与深度学习融合,显著提升了故障诊断的准确性与鲁棒性。其在旋转机械、电力设备等场景的应用已验证其有效性,未来可通过轻量化设计与自适应参数优化进一步拓展工业适用性。
📚2 运行结果
部分代码:
%% EEMD-MPE-PCA-bilstm%% EEMD-MPE-PCA-bilstm%% EEMD-MPE-PCA-bilstm
data3=Y; %读取kpca数据
%输入输出数据
input3=data3(:,1:end-1); %data的第一列-倒数第二列为特征指标
output3=data3(:,end); %data的最后面一列为标签类型
N=length(output3); %全部样本数目
testNum=0.2*N; %设定测试样本数目
trainNum=N-testNum; %计算训练样本数目
%训练集、测试集
P_train3 = input3(1:trainNum,:)';
T_train3 =output3(1:trainNum)';
P_test3 =input3(trainNum+1:trainNum+testNum,:)';
T_test3 =output3(trainNum+1:trainNum+testNum)';
num_class = length(unique(data3(:, end))); % 类别数(Excel最后一列放类别)
t_train3 = categorical(T_train3)';
t_test3 = categorical(T_test3 )';
% 数据归一化
[p_train3, ps_input] = mapminmax(P_train3, 0, 1);
p_test3 = mapminmax('apply', P_test3, ps_input );
% 格式转换
for i = 1 : trainNum
pp_train3{i, 1} = p_train3(:, i);
end
for i = 1 : testNum
pp_test3{i, 1} = p_test3(:, i);
end
% 创建网络
numFeatures = size(P_train3, 1); % 特征维度
numResponses = num_class;
layers = [ ...
sequenceInputLayer(numFeatures) % 输入层
bilstmLayer(120, 'OutputMode', 'last') % bilstm层
reluLayer % Relu 激活层
fullyConnectedLayer(numResponses) % 全连接层数等于分类数
softmaxLayer % 损失函数层
classificationLayer]; % 分类层
% 参数设置
checkpointPath = pwd;
options = trainingOptions('adam', ... % 优化算法Adam
'MaxEpochs', 200, ... % 最大训练次数
'GradientThreshold', 1, ... % 梯度阈值
'InitialLearnRate', 0.045, ... % 初始学习率
'LearnRateSchedule', 'piecewise', ... % 学习率调整
'LearnRateDropPeriod', 200, ... % 训练700次后开始调整学习率
'L2Regularization', 0.001, ... % 正则化参数
'LearnRateDropFactor',0.2, ... % 学习率调整因子
'ExecutionEnvironment', 'cpu',... % 训练环境
'Verbose', 0, ... % 关闭优化过程
'Plots', 'training-progress'); % 画出曲线
% 训练
[net_MSE2,info3] = trainNetwork(pp_train3, t_train3, layers, options);
% 预测
t_sim1_MSE = classify(net_MSE2, pp_train3);
t_sim2_MSE = classify(net_MSE2, pp_test3);
% 反归一化
T_sim1_MSE = double(t_sim1_MSE');
T_sim2_MSE = double(t_sim2_MSE');
disp('-------------------------------------------------------------')
disp('EEMD-MPE-KPCA-BILSTM故障诊断训练集误差指标')
[confmat3,Accuracy3,Precision3,Recall3,F1_score3]=calc_error(T_test3,T_sim2_MSE);
fprintf('\n')
figure;
hold on;
plot(T_test,'b:o');
plot(T_sim2_MSE,'r-*');
xlabel('测试集样本','FontSize',12);
ylabel('类别标签','FontSize',12);
legend('实际测试集分类','预测测试集分类');
string = {'EEMD-MPE-KPCA-BILSTM测试集的实际分类和预测分类图';['(正确率Accuracy = ' num2str(Accuracy3) '%)' ]};
title(string)
grid on;
% 混淆矩阵
figure
cm = confusionchart(T_test3, T_sim2_MSE);
cm.Title = 'EEMD-MPE-KPCA-BILSTM故障诊断的混淆矩阵';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取