【故障识别与诊断】基于EEMD-MPE-KPCA-BILSTM(集合经验模态分解-多尺度排列嫡-核主元分析-双向长短期记忆网络)用于故障识别与诊断研究(Matlab代码实现)

             💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、模型核心模块解析

1. EEMD(集合经验模态分解)

2. MPE(多尺度排列熵)

3. KPCA(核主元分析)

4. BiLSTM(双向长短期记忆网络)

二、模型协同工作流程

三、工业应用场景与性能对比

1. 典型应用场景

2. 性能对比数据

四、创新性与挑战

五、结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

一、模型核心模块解析

1. EEMD(集合经验模态分解)

基本原理
EEMD通过向原始信号x(t)x(t)添加高斯白噪声ni(t)ni​(t)生成多个扰动信号xi(t)=x(t)+ni(t)xi​(t)=x(t)+ni​(t),并对每个扰动信号进行EMD分解,最终对多次分解的IMF分量进行集合平均,以抑制模态混叠问题。其核心公式为:

优势与作用

  • 抗模态混叠:通过噪声统计特性平衡信号极值分布,解决传统EMD的模态混叠问题。
  • 自适应分解:适用于非线性、非平稳信号(如轴承振动、发动机转速信号)的分解,提取物理意义明确的IMF分量。
  • 应用案例:在发动机失火故障检测中,EEMD成功从曲轴转速信号中分离出故障特征IMF,准确识别失火时刻。

2. MPE(多尺度排列熵)

定义与计算
MPE通过粗粒化处理将时间序列映射到不同尺度ττ,计算各尺度下的排列熵以量化序列复杂度:

作用与优势

  • 多尺度特征提取:捕捉信号在不同时间尺度下的复杂度差异,如轴承故障信号的高频冲击成分与低频背景噪声。
  • 噪声抑制:通过熵值阈值区分噪声与有效信号(建议阈值0.55-0.60)。
  • 应用案例:在涡旋压缩机故障诊断中,MPE有效区分轴承松动(高熵值)与转子不平衡(低熵值)故障。

3. KPCA(核主元分析)

数学基础
KPCA通过核函数ϕ(⋅)ϕ(⋅)将数据映射至高维空间,在高维空间中执行PCA:

通过核技巧(如多项式核、高斯核)避免显式计算ϕ(x),直接求解核矩阵K(x,y)的特征值问题。

作用与优势

  • 非线性特征提取:处理工业数据中的非线性关系,提取低维主元(如砂铸缺陷检测中累计方差贡献达93.2%)。
  • 降维与去噪:通过保留主成分降低数据维度,同时抑制噪声干扰。

4. BiLSTM(双向长短期记忆网络)

结构与原理
BiLSTM由正向和反向LSTM层组成,分别处理序列的过去与未来信息,输出为两方向隐藏状态的拼接:

通过遗忘门、输入门、输出门控制信息流动,解决梯度消失问题。

优势与作用

  • 时序建模:捕捉故障信号的长期依赖关系,如充电桩电能表误差估计中自相关特性的挖掘。
  • 高鲁棒性:在合成数据测试中,BiLSTM的均方误差(MSE)显著低于单向LSTM。

二、模型协同工作流程

  1. 信号分解:EEMD将原始信号分解为若干IMF分量,抑制模态混叠。
  2. 特征提取:计算各IMF的MPE值,构建多尺度特征矩阵。
  3. 降维处理:KPCA对高维特征矩阵进行非线性降维,提取关键故障特征。
  4. 分类诊断:BiLSTM对降维后的特征进行时序建模,输出故障类别概率。

流程示例
轴承振动信号→EEMD分解→IMF分量→MPE多尺度熵计算→KPCA降维→BiLSTM分类→故障类型输出。


三、工业应用场景与性能对比

1. 典型应用场景
  • 发电机组故障诊断:通过振动信号分析实现健康管理、预测性维护。
  • 注塑机预测性维护:融合多传感器数据,降低非计划停机风险(如美的工厂案例)。
  • 轴承与齿轮故障检测:在噪声环境下准确识别早期故障。
2. 性能对比数据
模型准确率RMSEF1 Score
EEMD-MPE-KPCA-BiLSTM99.6%0.6298.7%
EMD-SVM92.3%1.2589.5%
CNN-LSTM96.8%0.8995.2%
(注:数据参考自混合模型对比研究)


四、创新性与挑战

创新性

  • 多技术融合:结合信号分解、非线性特征提取与双向时序建模,全面应对工业数据的非平稳、非线性特性。
  • 端到端诊断:从原始信号到故障分类的全自动化流程,减少人工干预。

挑战

  • 计算复杂度:EEMD和MPE的多次迭代计算需优化效率。
  • 参数敏感性:MPE的尺度选择、BiLSTM的超参数调优需结合领域知识。

五、结论

EEMD-MPE-KPCA-BiLSTM模型通过多阶段特征处理与深度学习融合,显著提升了故障诊断的准确性与鲁棒性。其在旋转机械、电力设备等场景的应用已验证其有效性,未来可通过轻量化设计与自适应参数优化进一步拓展工业适用性。

📚2 运行结果

部分代码:

%% EEMD-MPE-PCA-bilstm%% EEMD-MPE-PCA-bilstm%% EEMD-MPE-PCA-bilstm
 data3=Y; %读取kpca数据
%输入输出数据
input3=data3(:,1:end-1);    %data的第一列-倒数第二列为特征指标
output3=data3(:,end);  %data的最后面一列为标签类型

N=length(output3);   %全部样本数目
testNum=0.2*N;   %设定测试样本数目
trainNum=N-testNum;    %计算训练样本数目


%训练集、测试集
P_train3 = input3(1:trainNum,:)';
T_train3 =output3(1:trainNum)';
P_test3 =input3(trainNum+1:trainNum+testNum,:)';
T_test3 =output3(trainNum+1:trainNum+testNum)';
num_class = length(unique(data3(:, end)));  % 类别数(Excel最后一列放类别) 


t_train3 =  categorical(T_train3)';
t_test3  =  categorical(T_test3 )';

% 数据归一化
[p_train3, ps_input] = mapminmax(P_train3, 0, 1);
p_test3 = mapminmax('apply', P_test3, ps_input );
%  格式转换
for i = 1 : trainNum
    pp_train3{i, 1} = p_train3(:, i);
end

for i = 1 : testNum
    pp_test3{i, 1} = p_test3(:, i);
end

%  创建网络
numFeatures = size(P_train3, 1);               % 特征维度
numResponses = num_class;

layers = [ ...
 sequenceInputLayer(numFeatures)                  % 输入层
  bilstmLayer(120, 'OutputMode', 'last')         %  bilstm层
  reluLayer                                    % Relu 激活层
  fullyConnectedLayer(numResponses)               % 全连接层数等于分类数
  softmaxLayer                                 % 损失函数层
  classificationLayer];                        % 分类层

% 参数设置
checkpointPath = pwd;
options = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 200, ...                             % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.045, ...                    % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod', 200, ...                   % 训练700次后开始调整学习率
     'L2Regularization', 0.001, ...                   % 正则化参数
    'LearnRateDropFactor',0.2, ...                    % 学习率调整因子
    'ExecutionEnvironment', 'cpu',...                 % 训练环境
    'Verbose', 0, ...                                 % 关闭优化过程
    'Plots', 'training-progress');                    % 画出曲线

%  训练
[net_MSE2,info3] = trainNetwork(pp_train3, t_train3, layers, options);

%  预测
t_sim1_MSE = classify(net_MSE2, pp_train3); 
t_sim2_MSE = classify(net_MSE2, pp_test3); 

%  反归一化
T_sim1_MSE = double(t_sim1_MSE');
T_sim2_MSE = double(t_sim2_MSE');

disp('-------------------------------------------------------------')
disp('EEMD-MPE-KPCA-BILSTM故障诊断训练集误差指标')
[confmat3,Accuracy3,Precision3,Recall3,F1_score3]=calc_error(T_test3,T_sim2_MSE);
fprintf('\n')

figure;
hold on;
plot(T_test,'b:o');
plot(T_sim2_MSE,'r-*');
xlabel('测试集样本','FontSize',12);
ylabel('类别标签','FontSize',12);
legend('实际测试集分类','预测测试集分类');
string = {'EEMD-MPE-KPCA-BILSTM测试集的实际分类和预测分类图';['(正确率Accuracy = ' num2str(Accuracy3) '%)' ]};
title(string)
grid on;
%  混淆矩阵
    
figure
cm = confusionchart(T_test3, T_sim2_MSE);
cm.Title = 'EEMD-MPE-KPCA-BILSTM故障诊断的混淆矩阵';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值