算法设计与分析 2.1 杰哥和序列
题目描述
杰哥喜欢单调不下降的序列,因为他觉得这样的序列有美感。
今天杰哥得到了一个长度为的序列,但是他今天心情不好,他把序列丢给了你,要你把他变成单调不下降的序列。
你可以花费A单位的时间交换序列中两个相邻的元素,当然,你也可以选择干一半摸鱼罢工。
最后你要把序列还给杰哥,但是如果杰哥发现序列中每有一个逆序对,就会把你抓过去,训话B单位时间。
你想花最少的时间(主动交换元素+被动被杰哥训话的时间)把这个事解决了,问这个时间是多少。
逆序对的定义:存在两个整数 D[i] 和 D[j] ,满足 i < j ,且 D[i] > D[j],则 < D[i] , D[j] > 这个有序对称为 D 的一个逆序对。
输入格式
输入第一行为三个空格隔开的正整数 N、A、B,代表序列长度为N,A和B的含义见题面。
接下来一行有 N 个整数,第i个数表示序列的第 i 个元素 D[i]。
对于80%的数据,1 <= N, A, B <= 2000。
对于100%的数据,1 <= N, A, B <= 100000,序列元素非负且在int范围内。
输出格式
输出你要花费的最少时间。
样例输入
2 1 2
2 1
样例输出
1
参考代码
#include <iostream>
/*
求逆序对个数
归并排序中后面节点往前移动的距离总数就是逆序对的个数
*/
int a[100001],b[100001];
long long int count=0;
void merge(int start,int mid,int end){
int i=start,j=mid+1,k=start;
while(i<=mid&&j<=end)
if(a[i]<=a[j]) // 一定要 <=
b[k++]=a[i++];
else{
count+=j-k;
b[k++]=a[j++];
}
while(i<=mid)
b[k++]=a[i++];
while(j<=end)
b[k++]=a[j++];
for(int i=start;i<=end;i++){
a[i]=b[i];
}
}
void mergeSort(int start,int end){ // end:最后一个元素的下标
if(start>=end) return;
mergeSort(start,(start+end)/2);
mergeSort((start+end)/2+1,end);
merge(start,(start+end)/2,end);
}
int main(void){
int N,A,B;
std::cin>>N>>A>>B;
for(int i=0;i<N;i++){
std::cin>>a[i];
}
mergeSort(0,N-1);
std::cout<<count*((A>B)?B:A);
}