106. 从中序与后序遍历序列构造二叉树【 力扣(LeetCode) 】

零、LeetCode 原题


106. 从中序与后序遍历序列构造二叉树

一、题目描述

给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。

二、测试用例

示例 1:

在这里插入图片描述

输入:inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
输出:[3,9,20,null,null,15,7]

示例 2:

输入:inorder = [-1], postorder = [-1]
输出:[-1]

提示:

1 <= inorder.length <= 3000
postorder.length == inorder.length
-3000 <= inorder[i], postorder[i] <= 3000
inorder 和 postorder 都由 不同 的值组成
postorder 中每一个值都在 inorder 中
inorder 保证是树的中序遍历
postorder 保证是树的后序遍历

三、解题思路

  1. 基本思路:
      和 105. 从前序与中序遍历序列构造二叉树 思路类似,递归,用后序遍历确定根,再根据中序遍历划分左右子树;
  2. 具体思路:
    • 先将中序遍历的值和下标进行映射,方便后续 O ( 1 ) \Omicron(1) O(1) 的复杂度得到根节点的下标;
    • 确定二叉树的 中序终点坐标 inI 和 后序终点下标 postI ,二叉树的结点数 size
    • 判断序列长度,小于等于 0 则返回 空指针 ;
    • 确定右子树的结点数 i
    • 构建根节点,根节点的值为后序终点下标 postI 对应的值
    • 构建左子树,其中序终点下标为 inI - i - 1 ,后序终点下标为 postI - i - 1 ,大小为 size - i - 1
    • 构建右子树,其中序终点下标为 inI ,后序终点下标为 postI - 1,大小为 i
    • 返回该二叉树;

四、参考代码

时间复杂度: O ( n ) \Omicron(n) O(n)
空间复杂度: O ( n ) \Omicron(n) O(n)

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
 * right(right) {}
 * };
 */
class Solution {
public:
    std::unordered_map<int, int> val_index;

    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        int n = inorder.size();
        for (int i = 0; i < n; i++) {
            val_index[inorder[i]] = i;
        }
        return buildTree(inorder, postorder, n - 1, n - 1, n);
    }
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder, int inI,
                        int postI, int size) {
        if (size <= 0)
            return nullptr;
        int i = inI - val_index[postorder[postI]];

        TreeNode* root = new TreeNode(postorder[postI]);
        root->left = buildTree(inorder, postorder, inI - i - 1, postI - i - 1, size - i - 1);
        root->right = buildTree(inorder, postorder, inI, postI - 1, i);

        return root;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值