Dijkstra-单源最短路径


public class Dijkstra {
    static int g[][];
    static int dist[];//源点到各点的距离
    static boolean known[];//各店是否知道最短路径
    static int [] prev;//prev:各点最短路径点的前一点
    public static void main(String[] args) {
     g=new int[5][5];
     for(int i=0;i<5;i++)
     {
         for(int j=0;j<5;j++)
         {
             g[i][j]=Integer.MAX_VALUE;
         }
     }
     g[0][1]=10;g[0][3]=30;g[0][4]=100;g[1][2]=50;
     g[2][4]=10;g[3][2]=20;g[3][4]=60; 
     dist=new int[5];
     known=new boolean[5];
     prev=new int[5];

     for(int i=0;i<5;i++)
     {
         dist[i]=Integer.MAX_VALUE;
     }

     dijkstra();

     for(int i=0;i<5;i++)
     {
         System.out.print("0->"+i+":");
         print(i);
         System.out.println();
     }
    }

    public static void print(int v){
        if(v!=0)
            print(prev[v]);
        System.out.print(v+" ");
    }
    public static  void dijkstra(){
          int s=0;//s为源点
          dist[s]=0;//初始化
          for(;;)
          {
              int v=s;      
              int min=Integer.MAX_VALUE;

              for(int i=0;i<5;i++)
              {
                  if(min>dist[i]&&!known[i])//寻找新的节点v
                      {    min=dist[i];
                             v=i;
                      }
                      }   
              if(min==Integer.MAX_VALUE)//如果找不到则退出,也表示遍历结束
                 break;     
                known[v]=true;//若找到则将v设为已知
                for(int j=0;j<5;j++)//遍历所有v指向的定点v
                {
                    if(!known[j]&&g[v][j]<Integer.MAX_VALUE&&dist[j]>dist[v]+g[v][j])
                    {
                        dist[j]=dist[v]+g[v][j];prev[j]=v;
                    }
                }           
          }
          }     
    }

输出:

0->0:0
0->1:0 1
0->2:0 3 2
0->3:0 3
0->4:0 3 2 4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值