运维工程师的出路在哪里?

最近看到一个热门话题:运维工程师的出路在哪里?

这个话题以前也被讨论过,疫情后时代即将步入第六年的时候,再次被拿出来继续讨论,可以看出大家对运维工程师出路的迷茫与焦虑。这几年中美对抗加码升级,经济预期持续向下,行业生存环境急剧变化。大家都有一种感觉现在事是越来越难干了,钱是越来越难赚了。“活下去”成为悬在头顶的达摩克之剑,降本增效成为不得不使用的开源节流手段。出了事故运维背锅,不出事故老板又觉得运维没有用处。作为并不直接为企业创造利润的运维部门,降本增效可能就会先拿运维工程师开刀,运维工程师被输送给社会,出路问题也就摆在了面前。

## 一、运维工程师主要做什么

首先,我们来复习一下运维的概念。所谓IT运维(Information Technology Operations and Maintenance),即信息技术运营与维护,是指单位IT部门采用相关的方法、手段、技术、制度、流程和文档等,对IT软硬件运行环境、IT业务系统和IT运维人员进行的综合管理活动。IT运维的目的是确保信息系统的稳定性、可靠性、安全性和高效性,支持企业业务的连续性和发展需求。

传统的IT 运维主要包括:系统管理、网络管理、数据库管理、技术支持、终端维护、数据中心维护、应用程序管理、云服务管理、安全与合规管理、配置管理等。

运维工程师工资从三千到几万(甚至可能更高)不等,差距极大。这里我不分析工资差距的原因,先看一张图片,是我从求职网站随机选取的四个运维岗位要求及薪资待遇信息。

图片

从不同薪资的岗位要求,可以看出,越高的薪资对运维工程师的能力要求自然就更高。从更高薪资的岗位职责和要求,也许我们可以找到运维工程师的发展方向和路线,寻找我们的出路,从而远离焦虑、恐惧和内耗。

接下来再看一看运维的发展过程。

## 二、运维的发展阶段

图片

  运维发展各阶段示意图(以某电信运营商为例)

### 1 、运维的石器时代---传统人工运维阶段 :

在这个时期,运维主要依赖人工操作,比如手动安装 Windows Server、Linux(如 Redhat、CentOS、SUSE 等)操作系统,手动安装 Sybase、SQL Server、MySQL、Postgres 等数据库,手动安装配置 JDK 和 Tomcat 中间件,手动配置并发布应用。那时候有一个名词叫LAMP ,就很好概况了这个阶段的特点,就是利用Linux、Apache、MySQL、PHP 就能搭建一个网站或者发布一个基于 Web 的应用。这个阶段运维工作一般都是响应式而非预防的运维操作,效率低,缺乏统一标准流程,受人为因素影响较大。

### 2 、运维的青铜时代---自动化运维阶段:

随着互联网普及、大数据时代到来,各类技术企业迅速发展壮大,对系统架构也提出了越来越高的要求,系统的承载力、自动化能力等都需要同步提高,运维工程师就需要具备更高效、更成熟的技术能力,为实现流程自动化、监控、部署和管理要求,这个阶段的运维工程师要会使用 Docker 容器技术和 Kubernets 编排技术(K8S)、使用配置管理工具(如Ansible、Chef、Puppet、SaltStack)来自动化配置管理和维护、会利用持续集成/持续部署(CI/CD)工具(Jenkins、Git 等)实现代码的自动化构建和部署、会使用Python、Go 等编程语言编写编写自动化脚本或者工具。大量的传统人工运维工程师没进化到这个阶段,将会被淘汰或者无法提升工资水平。

### 3 、运维的铁器时代---智能化运维阶段: 

自动化运维阶段和智能化运维时间会有重叠,随着近两年AI 技术的突飞猛进,智能化运维时代很可能会发展得很快。智能化运维的发展目标是无人运维,看到这个是不是很绝望。但是,无人运维背后还是得有运维人员来维护,就像无人驾驶技术一样,司机从车上转到了线上而已,还是需要运维工程师的。当然,这阶段对运维工程师的要求也会更高,毕竟需要的运维工程师会更少。

## 三、运维工程师的出路在哪里

介绍完运维工程师的工作内容和运维的发展阶段之后,来到本文真正要讨论的内容:运维工程师的出路在哪里?如果你志不在此,比如打算转行、考公、考研等等,或者有大把的家产可以继承,再或者找到个富婆把自己嫁了,可以不用考虑出路问题。

### 1 、技术方向

就像汽车淘汰马车、新能源车淘汰燃油车一样,顺应发展趋势,不断学习和进化,才能保持你的优势。累死自己,卷死同行。是现阶段的真实写照。如果想在技术方向有所精进,按照运维的发展趋势,处于人工运维阶段的运维工程师必须快速精进到自动化运维工程师阶段。天下武功,唯快不破。快,就能占领先机。

由于运维工作的性质,日常工作比较繁杂凌乱,很多人没有养成总结和思考的习惯,这一点必须改。保持深度思考的人最难被取代。工作再忙也要主动寻找更好的答案。运维工作杂,容易导致我们掌握的知识点很散乱如一盘散沙,无法形成点---线---面而构建成自己的知识体系。下图是网路上看到一个运维技能图谱。我们可以根据自己的情况也总结一下自己的知识,制作自己的技能图谱,查漏补缺,早日形成自己的知识体系。建立知识体系,比单项技能和完成某一个目标更重要。有了知识体系,才能做到运用自如,融会贯通,事半功倍。

图片

### 2、业务方向

技术必须和业务结合,才能发挥出最大的作用。不少运维工程师过于迷恋技术。认为花更多的时间研究业务不如多学习通用技术,这种想法是很片面的。人才市场里会通用技术的人才很多,但是公司的业务才是公司赚钱的关键。而且深谙公司业务的运维工程师,更不会轻易被优化。所以,如果想在业务方向大展手脚,就不能被技术限制住。技术只是工具,重要的是用好它,为公司业务所用,才能创造价值赚得利润。后续也可向售前工程师或者产品经理方向发展。

### 3、管理方向

规范和明确运维人员的岗位职责和工作安排、提供绩效考核量化依据、提供解决经验与知识的积累与共享手段,实现完善的 IT 运维管理是企业提高经营水平和服务水平的关键。有志于从事管理方向的运维工程师,需要学习更多的管理知识,体现在管人、管物、管事等多个方面。注意底层管理者并不算真正的管理者,但只有先成为底层管理者,不断提高管理人、事、物的能力,才能真正成为管理者。

## 四、运维工程师的几个注意事项

作为一个还在不断摸索出路的运维工程师,技术方向、业务方向、管理方向是我目前能想到的三个方向。如果选定了自己的方向,就不要想太多。干什么?怎么干?干就完了。先去干,没干好或者干得稀烂,也不要紧,总结失败和不足,再去实践。如此循环往复,持续改进。聚焦自己做的事情,聚焦才能做长期正确的事情。怯懦和犹豫只会囚禁人的灵魂,捆绑自己的手脚。

当前环境下,运维工程师还有几个注意事项:

### 1、保持低调,努力向前

压垮人的不是事情,而是情绪。当前经济下行,就业环境不太好。更需要保持低调,静下心来锤炼自己的业务能力和技术水平以及沟通能力、协作能力。世界上有两种人,一种是决定别人命运的人,一种是被别人决定命运的人。每个运维工程师都应做决定自己命运的人,有朝一日还能决定别人的命运。遇到困难和低谷,努力去征服困难。查理·芒格说过:“人生如戏,各阶段皆遇险阻。我认为应对之法有三:期望适中;保持幽默;沐浴亲友之爱。”

### 2 、减少不必要的支出

减少不必要的支出,在当前环境非常有必要。幸运和厄运你永远不知道哪个先来,所以运维工程师要降低自己的消费,多存钱,把支出尽量降低。当然,必要的学习和提升自己的花费该出还得出。

### 3、多考证

说到考证,不少运维工程师可能会说考证无用。但是有些证考了本身就可以获得一些收入,而且当前大家有被优化焦虑的情况下多一些认证,会减少被优化的风险。

### 4、找一个副业

有可能的情况下,不,是现在必须有一个副业。光有一份工作收入,等于把鸡蛋放在了一个篮子里。一旦被优化,篮子掉地上,鸡蛋全稀碎。所以必须有一个副业收入,至于这个副业是什么,大家可以根据自己的情况来定。有了副业收入,不仅是一个有力的收入补充,而且说不定哪天成为主业也说不定。

人生如逆旅,我亦是凡人。逆水行舟,不进则退。大家一起努力吧!

<think>好的,用户现在问的是AI时代运维出路在哪里。首先,我需要理解用户为什么会关心这个问题。可能用户本身是运维人员,或者对IT行业的发展趋势感兴趣,担心传统运维岗位会被AI取代,想了解未来的发展方向。 接下来,我需要回顾之前的对话历史。用户之前问过本地部署DeepSeek的相关问题,我详细分析了本地部署的优势、挑战以及适用场景。现在的问题转向运维在AI时代的出路,这可能和之前讨论的本地部署中的运维挑战有关,比如硬件成本、运维复杂度等。用户可能想知道在AI普及的情况下,运维人员应该如何转型或提升技能。 首先,我应该分析AI对运维的影响。传统运维可能面临自动化工具的替代,比如AI可以自动监控、预测故障、自动修复等。但另一方面,AI也带来了新的机会,比如需要运维人员管理AI基础设施,优化模型部署,处理数据等。 然后,我需要考虑用户可能的深层需求。他们可能担心职业前景,希望了解具体的发展方向和技能要求。因此,回答中不仅要说明挑战,还要给出具体的出路建议,比如转型为AIOps工程师、参与MLOps、云原生运维等。 此外,结合之前的回答,本地部署涉及到硬件和运维复杂度,用户可能想知道在AI时代,如何结合这些已有的知识进行转型。比如,之前提到的混合部署方案,运维人员可能需要掌握云和本地环境的整合管理。 还要注意用户可能的背景,他们可能是企业中的IT决策者,或者是个人运维从业者,需要不同的建议角度。但问题比较普遍,应该保持回答的通用性,涵盖技能提升、角色转变、行业趋势等方面。 最后,要确保回答结构清晰,分点说明,让用户容易理解。可能包括挑战、新机遇、核心技能、发展方向等部分。同时,提供实际例子或转型路径,帮助用户具体操作。 总结,回答需要涵盖AI对运维的冲击,新的机会领域,必要的技能升级,以及具体的职业发展方向,同时结合之前讨论的本地部署相关内容,保持连贯性。</think>在AI技术快速渗透各行业的时代,传统运维(IT Operations)正在经历**从“被动救火”到“主动智能”的范式转移**。以下是运维领域的关键变革方向与突破路径分析: --- ### **一、AI对运维的冲击与机遇** | **传统运维痛点** | **AI驱动的变革** | **新增价值点** | |---| | 人工巡检效率低 | 算法预测故障(如LSTM预测硬盘寿命)| 故障发现从小时级缩短至秒级 | | 日志分析依赖经验 | NLP自动解析日志(如定位K8s崩溃根因)| 根因分析准确率提升40%+ | | 扩容决策滞后 | 强化学习动态调度资源(如AutoScaling)| 资源利用率从30%提升至70% | | 安全防御被动响应 | 异常行为图谱实时检测(如APT攻击识别)| 防御响应时间从小时级到毫秒级 | --- ### **二、运维人员的四大转型方向** #### **1. AIOps工程师运维与算法的深度融合** - **核心能力** - 掌握时序预测(Prophet、ARIMA)用于容量规划 - 构建知识图谱实现故障传播链推演 - 开发自动化修复机器人(如ChatOps集成LLM) - **案例**:某银行用AI预测交易系统峰值,提前扩容避免宕机,年度损失减少¥800万。 #### **2. MLOps专家:AI模型的全生命周期运维** - **关键任务** - 设计模型监控体系(数据漂移检测、性能衰减告警) - 搭建自动化训练流水线(如Kubeflow + Prometheus) - 优化推理资源调度(如NV Triton动态批处理) - **趋势**:MLOps工具市场年增长率达21%(Gartner 2024预测)。 #### **3. 云原生架构师:智能化基础设施设计** - **技术栈升级** - Serverless异常检测(AWS Lambda + XGBoost) - 智能边缘计算(K3s集群的AI驱动调度) - 混沌工程AI化(自动生成故障注入场景) - **数据**:云原生运维岗位需求3年增长300%(LinkedIn 2023报告)。 #### **4. 业务可靠性工程师(SRE+AI)** - **创新实践** - 用强化学习优化SLO(如动态调整错误预算阈值) - 构建数字孪生系统模拟压力测试 - 知识库自动沉淀(LLM提取事故报告中的解决方案) --- ### **三、必须掌握的六大技术武器** 1. **可观测性AI化** - 工具:Elasticsearch + OpenAI日志聚类 - 技能:将Trace/Metrics/Logs转化为特征工程输入 2. **低代码运维开发** - 平台:AutoML(H2O Driverless AI)生成告警规则 - 方法:用回归模型预测云成本,动态优化Spot实例占比 4. **安全运维AI协作** - 技术:联邦学习实现隐私合规的威胁情报共享 5. **硬件-算法协同优化** - 场景:为NVIDIA DPU编写定制化AI监控插件 6. **人机协作界面重构** - 趋势:自然语言运维(如“用中文描述需求→自动生成Terraform代码”) --- ### **四、未来3年关键发展路径** ```python # 运维人员能力升级路线模拟(建议) def career_path(current_skill): if current_skill == "传统运维": return "学习Python→掌握Prometheus→考取CKA→参与AIOps项目" elif current_skill == "中级DevOps": return "深入研究TFX/Kubeflow→实践混沌工程→主导MLOps落地" else: return "探索LLM+运维新场景(如自动编写Ansible Playbook)" print(career_path("传统运维")) # 输出:学习Python→掌握Prometheus→考取CKA→参与AIOps项目 ``` --- ### **五、行业先行者实践参考** - **电网行业**:国网某省公司用AI预测变电站设备故障,运维人力需求下降60% - **游戏行业**:米哈游通过AI自动扩容原神服务器,应对全球玩家峰值波动 - **金融行业**:蚂蚁金服智能运维平台可提前7天预测支付系统风险 --- ### **总结与建议** 1. **认知升级**:运维不再是“背锅侠”,而是**业务连续性的AI架构师** 2. **能力重组**:聚焦“数据敏感度+算法理解力+工程落地力”三角能力 3. **工具策略**:优先掌握开源AIOps栈(如Elastic Stack + PyTorch Forecasting) **最终出路**:**成为AI系统的“医生”**——既懂基础设施的“生理结构”,又能用AI工具进行“精准诊断治疗”。那些率先将AI转化为运维超能力的人,将在技术革命中赢得不可替代性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

运维技术小记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值