自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(123)
  • 资源 (8)
  • 问答 (1)
  • 收藏
  • 关注

原创 深度学习100问95:如何从零创建一个经典的深度学习网络

给你的网络设置各种参数,就像调整交通工具的各种设置。有很多经典的深度学习网络架构可以选择,比如卷积神经网络(CNN)用于图像相关问题,循环神经网络(RNN)用于处理序列数据。用测试集来评估网络的性能,就像在冒险途中检查自己走的方向对不对。看看网络的准确率、召回率等指标。如果效果不好,就调整网络架构、参数等,再次进行训练,直到达到满意的效果。当你的网络训练好后,就可以把它部署到实际应用中啦,就像完成冒险后带着收获回家分享。确定你想用深度学习网络解决什么问题,比如图像分类、语音识别还是自动驾驶中的物体检测等。

2024-09-14 07:34:17 369

原创 深度学习100问94:自动驾驶中如何保证深度学习模型的可靠性和安全性?

1. 严格的数据收集和标注:就像精心挑选优质的食材来烹饪美食一样,要收集各种不同场景、不同条件下的高质量数据,并进行准确标注。比如在不同的天气(晴天、雨天、雪天)、不同的路况(平坦道路、崎岖山路、拥堵市区)下收集数据,确保模型能应对各种情况。2. 强化训练和验证:对模型进行大量的训练和严格的验证。3. 紧急制动和人工干预:在紧急情况下,要有可靠的紧急制动系统,就像汽车的“刹车”一样,能迅速让汽车停下来。2. 数据增强和清洗:对收集到的数据进行增强处理,比如旋转、翻转、缩放等操作,让模型学习到更多的变化。

2024-09-14 07:34:06 360

原创 深度学习100问93:深度学习在自动驾驶中应用时,有哪些技术难点需要克服?

而且要是模型出故障了,汽车得有备用的安全办法,不能一下子就乱套了。就像你考试的时候,突然笔坏了,你得有备用的笔一样。这就像你考试,老师也不知道你咋想的,那要是错了都不知道咋改。而且还得保证数据是准确的、多样的,不能只有一种情况的数据,不然汽车遇到不。这就像给汽车装了个超级强大的大脑,但这个大脑又贵又费电,还会发热。就像你玩游戏手机会发烫一样,汽车的这个大脑要是太热了也不行,会影响性能甚至坏掉呢。还有哦,数据得实时处理,就像你玩游戏不能卡顿一样,自动驾驶汽车也不能等半天才能反应过来,不然可就危险啦。

2024-09-14 07:33:56 159

原创 深度学习100问92:自动驾驶中深度学习具体应用有哪些

全局路径规划就像是汽车的导航小天使,根据地图和出发地、目的地,给汽车规划出一条最好走的路。局部路径规划呢,就像汽车的即时导航,遇到障碍物或者其他车的时候,能马上给汽车找出一条避开它们的路。车辆运动控制呢,就是把指挥官的命令变成实际的操作,控制油门、刹车和转向,让汽车开得又稳又好。传感器数据融合就更酷了,把汽车上的摄像头、激光雷达、毫米波雷达等各种“小帮手”的数据都整合起来,让汽车看得更准、更全面。最后说说预测与预警。危险预警就像是汽车的小警报器,一有危险就赶紧提醒汽车,让它赶紧刹车或者避让。

2024-09-14 07:33:47 211

原创 深度学习100问91:什么是模型蒸馏

这时候,我们就想用一种巧妙的方法把老教授的知识传递给一个更小巧的“学生模型”。我们通过一些特殊的训练方法,让学生模型从大师模型那里学习到重要的知识和模式,就像学生跟着老师学习解题技巧和经验一样。想象有一个很厉害的“大师模型”,它就像一位知识渊博的老教授,懂得很多很多。但是呢,这个老教授可能比较复杂,运行起来需要很多资源,就像一个庞大的图书馆,虽然藏书丰富但不好随身携带。最后得到的学生模型虽然没有大师模型那么强大,但也能掌握关键的本领,而且它更加小巧灵活,运行起来更快,消耗的资源也更少。

2024-09-10 09:28:28 236

原创 深度学习100问90:提高模型鲁棒性的方法有哪些

1. 玩个“超级变变变”游戏:就好像给模型准备了一个大游乐场,把数据一会儿转个圈,一会儿扭一扭。这样模型就像在游乐场里尽情玩耍的小朋友,见过各种花样,以后遇到啥奇怪的情况都不会害怕啦。1. 给模型加点“规则调料”:这就像给调皮的小朋友定规矩一样,不能让模型的参数太任性啦。这样就能让模型始终保持高鲁棒性,成为真正的“数据小超人”。经过一次次的挑战,模型就会越来越勇敢,对恶意攻击也能轻松应对啦。1. 经常给模型“考考试”:就像学生经常考试一样,咱们也得用各种方法评估模型,看看它在不同情况下的表现。

2024-09-10 09:28:20 281

原创 深度学习100问89:如何评估模型的鲁棒性

1. 给数据来点“小恶作剧”:就像跟模型开个小玩笑一样,对数据进行一些小的改动,比如在图像上稍微调暗一点颜色、加一点模糊,或者在文本中换几个相似的词。1. 看不同情况下的表现:除了看平时的准确率,还可以看看模型在不同数据集上、不同环境下的表现。2. 计算特殊指标:有一些专门用来评估鲁棒性的指标,比如对抗攻击下的准确率、模型对数据变化的敏感度等。总之,评估模型的鲁棒性就像是给模型来一场大考验,看看它在各种挑战下能不能稳住阵脚,成为真正的“数据小英雄”。评估模型的鲁棒性可以从以下几个有趣的角度来看哦。

2024-09-10 09:28:10 431

原创 深度学习100问88:什么是模型的鲁棒性

最后,鲁棒性强的模型还有很棒的泛化能力。就算实际的数据和训练时的数据有点不一样,比如照片的光线暗了点、角度歪了点,它也能像火眼金睛一样认出目标。而且,如果数据里有一些小捣乱的噪声或者奇怪的异常值,它也不会被轻易带偏,就像不会被小怪兽的干扰影响一样。面对恶意的对抗攻击,那些坏人故意在数据上动点小手脚想让模型犯错,可鲁棒的模型可不会上当,依然能准确地完成任务,守护数据的安全。鲁棒性强的模型呢,面对各种情况都能保持冷静,做出准确的判断。所以呀,模型的鲁棒性就是让模型变得更强大、更可靠的超能力呢!

2024-09-10 09:28:02 586

原创 深度学习100问87:如何理解强化学习算法中的奖励机制?

如果它找到了正确的道路或者完成了一个小任务,就会得到一颗“小红花”,也就是奖励。这个奖励会告诉小机器人,它刚才做的事情是对的,要继续这样做。比如,小机器人找到了迷宫的出口,就会得到一个大大的奖励,这会让它记住以后要朝着这个方向努力。相反,如果小机器人走进了死胡同或者做了错误的选择,就会得到“小批评”,也就是惩罚。比如,小机器人碰到了迷宫里的陷阱,就会受到惩罚,它就会知道要避开这些陷阱。总之,奖励机制是强化学习算法中的核心部分,它就像一个小老师在引导小机器人学习正确的行为,让它能够在复杂的环境中不断进步。

2024-09-10 09:27:52 297

原创 深度学习100问86:什么是强化学习算法

每次它采取一个行动后,环境会给它一个反馈,这个反馈可以是奖励或者惩罚。如果小机器人的行动让它更接近目标,它就会得到奖励;这些算法的目的都是让小机器人能够更快地学习到最佳行动策略,从而在复杂的环境中完成各种任务。想象一下,有一个小机器人在一个陌生的环境中,它不知道该怎么做才能达到一个目标。小机器人通过不断地接收这些反馈,逐渐学习到哪些行动是好的,哪些行动是不好的。总之,强化学习算法是一种让智能体通过与环境交互来学习最优行为的方法,就像一个小老师在教小机器人如何在世界中生存和发展。

2024-09-09 13:13:17 292

原创 深度学习100问85:模型融合的方法有哪些

有时候还可以给一些厉害的模型更多的投票权,就像学习好的同学说话更有分量一样。有几个模型都算出了一个结果,我们就把这些结果加起来,然后除以模型的个数。比如三个模型算出的结果分别是 10、12、14,那我们就把它们加起来是 36,再除以 3,得到最终结果 12。这就像几个水平差不多的同学一起做一道题,把他们的答案平均一下,可能更接近正确答案。那我们可以给很准的那个模型更多的权重,让它对最终结果的影响更大。就像先让几个不太厉害的模型提出初步意见,然后再由一个很厉害的模型根据这些意见来做最终的判断。

2024-09-09 13:13:09 273

原创 深度学习100问84:什么是模型融合

常见的融合方法有投票法,这就像小伙伴们一起投票决定结果,要是大多数小伙伴都觉得是这样,那肯定就八九不离十啦。还有平均法和加权平均法,就像是把小伙伴们的预测结果加在一起平均一下,或者根据每个小伙伴的厉害程度给不同的重要性权重再平均,最后得出超厉害的结果。这样他们的本事就能合在一起啦。就像要找一个又红又圆还很大的神秘宝贝,这个英雄联盟里的小伙伴们就可以各显神通,齐心协力把这个宝贝找出来。模型融合可牛了,能让模型变得超准超稳,不管遇到啥复杂情况都能轻松应对,就像超级英雄联盟一起出动,什么难题都能攻克。

2024-09-09 13:13:01 448

原创 深度学习100问83:如何判断一个预训练模型的性能是否优秀

比如在自然语言处理领域,就像有个“语言大考场”,如果这个模型在里面的分数高,那就说明它可能挺厉害。一个好的模型应该在保证厉害的同时,训练起来不花太长时间,用起来速度也快,还不费太多资源。如果一个预训练模型能让你明白它是怎么做出决定的,比如哪些东西对结果影响大,那你就会更信任它。一个好的预训练模型就像一个可靠的工具,不管在啥环境下都能好好工作。这就像超级英雄比赛,把这个预训练模型和其他的模型放在一起比一比,看看谁更牛。总之呢,判断一个预训练模型好不好,要从好多方面看,就像挑一个超级棒的超级英雄助手一样。

2024-09-09 13:12:51 217

原创 深度学习100问82:有哪些常用的预训练模型

它在训练数据、训练步数、批次大小等方面进行了优化,去除了 BERT 中的下一句预测任务,采用动态掩码等技术,提高了模型的性能和稳定性。它结合了自回归和自编码模型的优点,采用了排列语言模型(Permutation Language Model),能够更好地捕捉文本的双向信息,同时避免了 BERT 中掩码符号带来的训练和预测不一致的问题。ResNet 通过引入残差连接,有效地解决了深度神经网络训练中的梯度消失问题,使得模型能够训练更深的网络结构,从而提高了模型的性能。

2024-09-09 13:12:42 382

原创 深度学习100问81:如何选择预训练模型

要是你的任务是给图片分类,那你就得找个在图片分类上很厉害的预训练模型。要是你在做自然语言处理的任务,比如给文章分类或者翻译啥的,那就得挑在这个领域表现好的模型。如果一个预训练模型有很多人支持,还有详细的教程和文档,那就像有一群热心的朋友帮你。要是没人支持,啥资料都没有,那你就像一个人在黑暗中摸索,可难啦。这就像看成绩单一样。你得看看这个模型在类似任务上的准确率、召回率、F1 值啥的。要是成绩不好,那你就得小心啦,别让它把你的任务也搞砸了。要是你的任务有点特别,需要调整一下模型,那这种灵活的模型就很合适。

2024-09-08 10:22:31 174

原创 深度学习100问80:什么是预训练模型

想象一下,在深度学习的世界里,有一个特别聪明的“学霸模型”。这个学霸呢,在超级大的图书馆(大规模数据)里泡了好久好久,看了好多好多的书(学习数据),学到了各种各样的知识。你可以直接用它,或者稍微调整一下它,让它更适应你的任务。这就好比你让学霸帮你做一道有点不一样的题目,学霸稍微动动脑筋就能很快给出答案。就像学霸已经掌握了很多通用的知识,当你遇到新问题的时候,不用从零开始学习,直接从学霸那里“借”点知识过来,能省好多时间和力气呢。所以呀,预训练模型就像是一个随时准备帮助你的超级知识宝库。

2024-09-08 10:22:23 143

原创 深度学习100问79:什么是激活函数

要是数据是负数呢,这个门就“砰”地一声关上,把负数挡在外面,只输出零。这样一来,模型在处理数据的时候,就会对正数更感兴趣,对负数就不怎么搭理啦。当数据这个原材料来到激活函数这里时,激活函数就像个有魔法的小精灵,按照特定的规则对数据进行一番“变变变”。要是没有激活函数,这个工厂就只能做一些很单调的工作,就像只会做直线运动。总之呀,激活函数就是深度学习模型里的一个超级重要的宝贝,有了它,模型就能像个小魔法师一样,把各种复杂的数据处理得妥妥当当。嘿,激活函数就像个神奇的“魔法盒子”。

2024-09-08 10:22:14 141

原创 深度学习100问78:如何通过调整模型结构来提高模型的泛化能力?

Dropout 层呢,就像在训练的时候让一些模型里的“小精灵”时不时地去休息,这样其他“小精灵”就不能偷懒,都得努力干活,模型就不会只依赖那几个“小精灵”啦。批归一化呢,就像是给数据们举办了一场“标准化派对”,让数据们都变得规规矩矩的,模型学起来就更容易,泛化能力自然就提高啦。比如 ReLU 激活函数,就像一颗超棒的糖果,能让“小精灵”们活力满满,模型训练起来更轻松,也不容易出问题,泛化能力就上去啦。总之呢,好好调整模型结构,就像给你的超级模型小伙伴穿上酷炫的装备,让它在各种情况下都能大显身手。

2024-09-08 10:22:06 275

原创 深度学习100问77:什么是模型的泛化能力

同样,如果一个模型只在训练集上表现好,遇到没见过的测试集数据就不行了,那这个模型的泛化能力就很弱。对于模型来说也是这样,如果它能在从未见过的测试集上也有出色的表现,那就说明它从训练数据中学到了真正有用的本事,而不是仅仅记住了那些特定的数据样本。比如说有个识别动物的模型,要是它只认识训练时候见过的那些猫和狗的图片,换了新的图片就不认识了,那它就像个只会在训练基地耍威风的假英雄。可要是它能认出各种没见过的猫和狗的图片,甚至还能认出其他动物,那它就是真正的超级英雄,泛化能力杠杠的。

2024-09-08 10:21:57 102

原创 深度学习100问76:模型压缩有哪些长见的方法

结构化剪枝则是有规律地剪掉一些较大的结构,比如剪掉一些特定的卷积核或神经元,就像剪掉树枝一样,能让模型保持较好的结构,更便于部署。还有一些专门设计的轻量级网络架构,如 MobileNet、ShuffleNet 等,就像专门为小户型设计的家具,既好看又实用还不占地方。学生不仅学习老师的最终答案,还学习老师在解决问题过程中的中间表示,就像学生不仅学老师的解题结果,还学老师的解题思路。把模型中的张量分解成低秩的形式。把模型中的参数从高精度的表示(比如 32 位浮点数)转化为低精度的表示(比如 8 位整数)。

2024-09-07 06:33:25 132

原创 深度学习100问75:模型压缩对性能有什么影响

1. 性能可能会下降一点哦:这就像为了让汽车跑得快把一些豪华配置给去掉了,那可能坐着就没那么舒服了,或者有些功能就没那么好用了。模型压缩的时候,可能会把一些对特定任务很重要的东西给弄没了,所以在某些情况下,它可能就没原来那么厉害啦。要是你的设备存储空间有限,比如那些小小的嵌入式系统或者你的手机,这可就太有用啦,能给你腾出好多空间来装别的好玩的东西。1. 速度变快啦:压缩后的模型就像一辆变轻了的小跑车,跑起来更快,还不费油。好好选压缩技术,再仔细调整调整,就能在性能还不错的情况下,省好多资源,还方便到处用。

2024-09-07 06:33:12 157

原创 深度学习100问74:深度学习中的模型压缩技术有哪些

比如用深度可分离卷积,就像把一个大工程拆成两个小工程,一个专门干深度的活,一个专门干逐点的活,这样既省材料又省力气。还有那些专门设计的轻量级网络架构,像 MobileNet、ShuffleNet 等,就像是专门为小户型设计的家具,既好看又实用,还不占地方。而结构化修剪呢,就像是有规划地扔掉一些旧家具,比如扔掉一些不怎么用的椅子或桌子,这样家里还是整整齐齐的,也好安排新的布置。钱换成小面额的,虽然总数不变,但占的地方小多啦。嘿,在深度学习的世界里,模型压缩技术就像是给庞大的模型减肥瘦身,让它变得更小巧灵活。

2024-09-07 06:33:02 107

原创 深度学习100问73:如何训练高效的深度学习模型

可以把菜转一转、翻个面、切一块(随机旋转、翻转、裁剪等操作),这样菜的数量变多了,种类也更丰富,做出来的菜味道更好(提高模型的泛化能力)。常见的有辣椒味的 ReLU、甜味的 Sigmoid、酸味的 Tanh 等,可以根据菜的特点选合适的调料。总之,训练高效的深度学习模型就像做菜一样,得精心准备食材、选好工具、掌握好火候、调味合适,最后还要评价一下好不好吃,不断调整,这样才能做出美味的“深度学习大餐”。2. 模型调优:如果觉得菜不好吃,就调整调整调料(模型参数、优化算法、学习率等),让菜更好吃。

2024-09-07 06:32:52 268

原创 深度学习100问72:有哪些方法可以提高生成对抗网络的训练稳定性

首先呢,可以给 GAN 换个更棒的“房子”,也就是改进网络结构。还可以用 Dropout 技术,随机地让一些神经元休息一下,就像在一个团队中,偶尔让一些人休息,让其他人也能承担起工作,这样整个网络就会更稳定啦。总之呀,要让 GAN 训练得更稳定,就得从多个方面下手,给它换个好“房子”,选个好“教练”,整理好“玩具”,再制定一些规则,这样它就能乖乖地生成更逼真的结果啦。可以用动态调整学习率的方法,比如学习率衰减,就像跑步的时候,一开始跑得快一点,后面慢慢调整速度,这样就能更稳定啦。二、选择合适的优化算法。

2024-09-07 06:32:40 260

原创 深度学习100问71:生成对抗网络在实际应用中有那些局限性

要是判别器变得超级厉害,一眼就能看出生成器造的假数据,那生成器就惨啦,根本不知道该咋改进,结果就生成不出好东西。反过来,要是生成器太牛,把假数据造得跟真的一模一样,判别器也傻眼了,没法给生成器有用的反馈。而且呀,在训练过程中还可能出现像梯度消失或爆炸这样的问题,就好像拔河的绳子突然断了或者飞出去了,让比赛没法正常进行。那些超参数,比如学习率、批处理大小啥的,稍微变一变,它的表现就完全不一样了。总之呀,虽然生成对抗网络很厉害,但在实际应用中还是有不少局限性,就像一个有小脾气的魔法工具,我们得小心地使用它。

2024-09-06 18:26:52 286

原创 深度学习100问70:什么是生成对抗网络

想象一下有两个超厉害的魔法师,一个叫生成器,另一个叫判别器。它的任务呀,就是画出超级逼真的画,或者写出跟人类写的差不多的文章。它不停地挥舞着魔法画笔,尝试用各种奇妙的颜色和线条,创造出让人惊叹的作品。要是判别器觉得一个东西是假的,它就会给生成器一个小信号,告诉它:“嘿,你这不行哦,还得继续加油改进。最后呢,当他们达到一种平衡状态的时候,生成器就能创造出超级逼真的作品啦,让人根本分不清楚这是真的还是生成出来的。总之呀,生成对抗网络就像这场有趣的魔法对决,通过两个魔法师的对抗,学会怎么生成超逼真的数据。

2024-09-06 18:26:44 211

原创 深度学习100问69:深度学习中的批量归一化有何作用

个层之间跑来跑去的时候,分布可能会一会儿这样一会儿那样,这可把模型累坏了,它得不停地去适应这些变化,就像一个人在坑坑洼洼的路上跑步,肯定跑不快呀。但是有了批量归一化,就可以让每一层输入的数据分布都变得稳稳当当的,这样模型就能专心地去学习有用的魔法,而不用老是去管数据分布变来变去,训练速度自然就快起来啦。最后呢,批量归一化还能缓解梯度消失和爆炸的问题,就像是给模型的梯度传递铺了一条“平坦大道”。但是有了批量归一化,就能让梯度的传播更稳定,减少梯度消失和爆炸的情况发生,让模型的训练更顺利。

2024-09-06 18:26:35 159

原创 深度学习100问68:什么是归一化

这样做有很多好处呢。如果不进行归一化,一个特征的值可能非常大,而另一个特征的值非常小,这样在计算的时候,大值的特征可能会占据主导地位,小值的特征就被忽略了。其次,归一化可以提高算法的收敛速度。在一些机器学习算法中,比如梯度下降法,如果数据没有归一化,算法可能会在不同的尺度上搜索最优解,这样就会走很多弯路,收敛速度很慢。想象一下,你有一堆杂乱无章的数字,它们可能大小差异很大,有的特别大,有的特别小。归一化就是要把这些数字处理一下,让它们都处在一个特定的范围里,比如 0 到 1 之间或者 -1 到 1 之间。

2024-09-06 18:26:25 198

原创 深度学习100问67:迁移学习在自然语言处理中的应用

在不同的领域里,语言的用法和特点可不一样哦。那就可以在金融领域的一点点数据上进行微调,让模型慢慢适应金融领域的语言特点,就像让一个科技达人去学习金融知识,然后变成金融小能手。这样就能很快地让模型适应新任务,而且效果还特别好,尤其是在标注数据不多的时候,就像找到了一个超级厉害的帮手。这些模型在超级多的文本上进行无监督学习,就像一个超级爱读书的学霸,读了好多好多书,学到了丰富的语言知识和语义表示。它能充分利用已有的知识和数据,让模型在新任务、新语言和新领域里都能表现出色,就像给语言处理加上了一双神奇的翅膀。

2024-09-06 18:26:16 211

原创 深度学习100问66:如何利用迁移学习提高模型性能

这个预训练模型就像一座魔法大楼,底层的一些房间里装着非常基础的魔法知识,比如识别图像的边缘、颜色啥的。比如说,要是你在做图像分类的任务,那在 ImageNet 上训练好的模型就像是个厉害的魔法宝物。这个模型见过好多好多各种各样的图像,就像一个知识满满的大师,知道很多图像的秘密呢。可能要调整上锁的房间和装修的房间的比例,或者试试不同的数据增强方法。用新任务的数据集来训练这些层,让模型慢慢学会新任务里的特定魔法。这样能让数据变得更多样,就像给模型提供更多不同角度的“风景”,让它更好地理解新任务。

2024-09-05 06:12:47 128

原创 深度学习100问65:如何避免深度学习里的欠拟合和过拟合

多给模型一些数据,就像让一个人多看看不同的猫,他就不会觉得所有猫都一个样啦。这就好比盖房子,简单的模型就像小破屋,肯定不行。多加点“砖头”,多盖几层,或者弄得更复杂点,就像给房子加上漂亮的装饰,这样模型就能更好地适应数据啦。训练的时候随机让一些神经元不工作,这样模型就会更坚强,不容易被个别例子迷惑。有时候模型学得时间太短,就像学生还没学完就去考试,那肯定考不好。总之呀,避免过拟合和欠拟合就像走钢丝,要找到平衡,让模型既不傻也不精过头,这样才能在深度学习的世界里表现棒棒哒!索”,就像给学生更多学习资料。

2024-09-05 06:12:38 223

原创 深度学习100问64:什么是深度学习中的过拟合和欠拟合

还是那个学生的例子,这个学生把课本上的每一个字都背得滚瓜烂熟,但是考试的时候,题目稍微变一点,他就不会了。在深度学习里,过拟合的模型把训练数据中的每一个小细节都记住了,但是却不能很好地泛化到新的数据上。比如说,用一个非常复杂的模型去处理一个不是那么复杂的问题,就容易出现过拟合。欠拟合呢,就是模型太“笨”啦。比如说,你用一个很简单的模型去处理一个很复杂的问题,就像用一个小勺子去舀大海里的水,根本舀不过来嘛。我们在深度学习中要努力找到一个平衡,让模型既能够学到数据中的重要规律,又不会被一些无关的细节给带偏了。

2024-09-05 06:12:28 181

原创 深度学习100问63:卷积神经网络和循环神经网络的区别

想象一下,它就像一个超厉害的画家,拿着放大镜在图像上这儿瞅瞅那儿看看。它的身体里有好多神奇的小工具,比如卷积层就像一个个小画笔,在图像上滑来滑去,专门找图像的边缘、纹理这些好玩的特征。所以呀,它在图像识别这些领域可厉害啦,比如帮我们认出可爱的小动物图片,或者找到图片里的某个物体。比如在处理文本的时候,一个词的意思可能会受到前面几个词的影响,循环神经网络就能记住前面的词,然后更好地理解当前这个词的意思。总之呀,卷积神经网络和循环神经网络各有各的本事,一个在图像世界大显身手,一个在故事世界里玩转乾坤。

2024-09-05 06:12:19 244

原创 深度学习100问62:卷积神经网络的工作原理是什么

首先是局部连接,就像侦探只关注现场的一小块地方,这样能抓住局部特征,还能少算点东西。还有哦,它能一层一层地提取特征,从低级的边缘纹理到高级的物体形状结构,就像侦探一步步揭开谜底。而且呢,它对图像的平移、旋转和缩放还有点不敏感,也就是说,不管图像怎么变变样子,它都能找出线索来。接着到了池化层,这就像是侦探在整理线索,把一些不太重要的细节去掉,让线索更简洁。想象一下,卷积神经网络就像是一个超级侦探,专门用来破解图像的秘密。首先呢,这个侦探有个入口,就是输入层,把图像塞进去,就像给侦探一个神秘的案件现场照片。

2024-09-05 06:11:29 190

原创 深度学习100问61:什么是transformer

当你给它一段文本的时候,它会超级认真地去分析,就像侦探在寻找线索一样,把文本里的各种信息和关系都找出来。这里面有个神奇的魔法叫自注意力机制,它能让这个理解大师同时盯着文本的不同地方看,这样就能更好地理解整个文本到底在说啥。在创造的过程中,它也会用自注意力机制这个魔法,还会盯着编码器的输出看,这样就能保证创造出来的文本又准确又流畅。它能处理超级长的文本序列,不像一些传统的模型,文本一长就不行了。总之呢,Transformer 就像一个充满魔法的盒子,能给我们带来好多神奇的语言处理效果,就像变魔术一样。

2024-09-05 06:11:16 153

原创 深度学习100问60:什么是自注意力机制

对于一段文本来说,自注意力机制就像一个特别好奇的小精灵,它会去探索每个词和其他所有词之间到底有着啥样的关系。然后呢,根据这些关系,给每个词都发一个重要程度的“小标签”。这样,当模型来处理这段文本的时候,就会像拿着一个放大镜,专门去看那些重要的词,而对不太重要的词就不那么关注啦。比如说在翻译一句话的时候,自注意力机制就像一个聪明的小助手,帮模型自动找出哪些词是翻译这句话的关键。总之呀,自注意力机制就像一个神奇的小魔法师,通过自动发现数据内部的重要关系,让模型变得更加聪明,能更好地处理各种复杂的数据。

2024-09-04 07:23:14 101

原创 深度学习100问59:如何使用双向RNN进行问文本分类

通过一些优化算法,不断调整模型的参数,让它能更好地猜出文本的类别。就像大厨做菜得先准备好食材一样,我们得收集好多文本,然后给它们贴上标签,比如把一些新闻文章标成体育类、娱乐类、财经类啥的。接着把这些文本“洗干净切好”,也就是做些预处理,去掉奇怪的符号呀,都变成小写呀,再分成一个个词。要是不错,那就可以把这个模型用在实际的文本分类任务中啦,让它给新的文本分分类,就像大厨把做好的美食端上桌给客人享用。总之呢,用双向 RNN 进行文本分类就像一场烹饪之旅,准备好材料,搭好厨房,好好做菜,最后端出美味的成果。

2024-09-04 07:23:02 119

原创 深度学习100问58什么是残差连接

首先呀,它让信息能更顺畅地流动,就像在迷宫里有了一条高速公路。其次呢,它能让模型既学到输入和输出之间的简单关系,又能去探索更复杂的变化。比如说,在一个超级深的神经网络迷宫里,如果没有残差连接,信息可能就像在一个漫长的旅程中逐渐迷失。但有了残差连接,重要的信息可以直接抄近道到达目的地,让模型变得更高效、更准确,就像有了一个超级导航,总能找到正确的路。在深度学习的世界里,神经网络就像一个巨大的迷宫,信息要一层一层地在里面穿梭。这就好比在迷宫里,你不用绕来绕去,直接就能从一个地方跳到另一个地方。

2024-09-04 07:22:54 174

原创 深度学习100问57:什么是双向RNN

它不仅能知道前面的词对后面的词有啥影响,还能明白后面的词反过来对前面的词有啥作用。比如说你看到“我喜欢吃苹果,因为苹果很甜”这句话,双向 RNN 既能从“我喜欢吃”开始理解后面为啥提到苹果,又能从“苹果很甜”倒推前面为啥说喜欢吃苹果。想象一下,你在看一部超精彩的电影,正常情况下你从开头看到结尾,了解剧情的发展。但双向 RNN 可不一样,它有个神奇的本领,既能顺着看,又能倒着看。所以呀,双向 RNN 就像一个有双向思维的小精灵,能帮助模型更准确地处理各种复杂的信息,完成像语言翻译、情感分析这些厉害的任务呢。

2024-09-04 07:22:45 199

原创 深度学习100问56:什么是注意力机制

在自然语言处理中,它就像一个“词语筛选器”,能找出句子里最有价值的词语,然后让模型重点关注这些词。图像识别里呢,它又变成了一个“画面放大镜”,专门把图像中关键的区域放大,让模型看得更清楚。而且哦,注意力机制还有不同的类型呢,就像超级英雄有不同的超能力一样。有自注意力机制、多头注意力机制等等,它们可以在不同的任务中发挥出巨大的作用。比如说,当你看一篇文章的时候,你的眼睛会不自觉地聚焦在那些关键的词语上,而忽略一些不太重要的部分。总之,注意力机制就像是一个魔法助手,帮助模型在信息的海洋中找到最闪亮的宝藏。

2024-09-04 07:22:35 162

OpenFlashChart C#flash图形控件使用 demo

OpenFlashChart是一款开源的以Flash和Javascript为技术基础的免费图表组件,用它能创建一些很有效果的报表分析图表。   最重要的是它是开源和免费的,该组件使用flash展示报表能够很好的做到与浏览器进行集成,目前浏览器基本都能很好的支持flash。

2011-10-09

DotNetCharting图形控件演示

最近在做项目时要对数据进行统计分析,所以必须生成一些报表统计图(如柱形图、饼图、曲线图等),网上强烈推荐了使用DotNetCharting控件来实现,于是自己对DotNetCharting控件进行了简单的学习,下面先简单介绍一下DotNetCharting控件及其使用。 DotNetCharting的简单使用方法: 1.把\bin\dotnetCHARTING.dll添加到工具箱,并且添加引用; 2.把控件拖到你的网页上,然后添加引用using dotnetCHARTING;就可以用了; 3.接下来是自己写的对DotNetCharting操作的封装类,以便于在程序里调用。

2011-10-09

维美科技考勤系统

网络考勤系统 整合了一套留言系统 采用asp.net+MSserver 技术

2011-10-09

模拟的考勤系统

界面简洁,美观,分两个大模块(左、右)。 左边 是导航菜单。一个js做的时间表 右边 是根据左边的菜单导航的各个对应位置的功能设置 操作前要登陆:用户名和密码是 51aspx 基本设置 部门设置 查看、添加、删除、修改部门 员工设置 查找、添加、删除、修改员工 考勤设置 设置考勤制度:制定职工迟到、旷工或早退的时限。所设置的参数,将在考勤日报生成时起作用; 设置节假日:可以指定那些日期是节假日 统计报表 统计报表 查看员工的出勤情况、管理员录入员工考勤记录 模拟打卡 模拟打卡 员工用来早晚打卡签到。自动给员工录入考勤信息。 数据库在DB_51aspx文件夹中 附加即可

2011-10-09

各种功能的弹出窗口 带遮罩层/不带带遮罩层

带遮罩层的普通窗口 不带遮罩层 在调用页面关闭弹出的窗口 关闭窗口并刷新或跳转调用页面

2011-06-01

用c#来实现的天气预报查询

一款 用c# winform 来实现的天气预报查询 天气预报查询

2011-06-01

SiteServer 十分钟快速入门教程

SiteServer网站后台管理系统 的 十分钟快速入门教程

2011-05-14

AlertBox js弹出框

非常不错的弹出框,包含对联广告效果,右下角弹窗效果等

2011-05-14

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除