以下是一些常用的预训练模型:
1. 自然语言处理领域:
- BERT(Bidirectional Encoder Representations from Transformers):由 Google 研发。它是一种基于 Transformer 架构的双向语言模型,在众多自然语言处理任务中表现出色。通过掩码语言模型(MLM)和下一句预测(NSP)两个任务进行预训练,能够很好地理解文本的上下文信息,广泛应用于文本分类、情感分析、问答系统等任务。例如,在情感分析任务中,BERT 可以准确地判断出一段文本所表达的情感倾向。
- GPT(Generative Pretrained Transformer)系列:OpenAI 推出的一系列语言模型。GPT-3 及其后续版本 GPT-3.5、GPT-4 等具有强大的语言生成能力和广泛的知识储备。它们采用自回归的方式进行训练,根据给定的上文生成连贯的文本。GPT 系列在文本生成、对话系统、代码生成等方面应用广泛,比如可以生成高质量的文章、回答各种问题、辅助程序员编写代码等。
- RoBERTa(Robustly Optimized BERT Pretraining Approach):Facebook 提出的改进版 BERT。它在训练数据、训练步数、批次大小等方面进行了优化,去除了 BERT 中的下一句预测任务,采用动态掩码等技术,提高了模型的性能和稳定性。在各种自然语言处理任务上的表现优于 BERT,尤其在大规模数据上的训练效果更好。
- XLNet:由卡内基梅隆大学和 Google Brain 联合提出。它结合了自回归和自编码模型的优点,采用了排列语言模型(Permutation Language Model),能够更好
深度学习100问82:有哪些常用的预训练模型
最新推荐文章于 2024-11-15 16:45:25 发布