力扣4寻找两个正序数组的中位数

本文介绍了一种解决给定两个正序数组寻找中位数问题的方法,通过双指针遍历,时间复杂度达到O(min(m+n))。作者比较了二分查找和双指针算法,并分享了实验心得。
摘要由CSDN通过智能技术生成

1.实验内容

给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。

2.实验目的

算法的时间复杂度应该为 O(log (m+n)) 。

3.基本思路

碰到时间复杂度要求log的,肯定用二分查找,即每次在现有数据的一半中找,下一次再一半,每次循环可以将查找范围缩小一半。但是我这里用多的是双指针算法,一起查找,不需要归并数组,只需找到中位数的下标,但是复杂度仍然是O(min(m+n))

4.算法分析

首先需要通过判断`m`和`n`的大小来确定两个数组是否为空。

如果两个数组都不为空,则使用双指针法遍历两个数组,将较小的元素依次添加到动态数组`temp`中,直到找到第k+1小的元素为止。

如果其中一个数组为空,则直接将另一个非空数组赋值给`temp`。最后,根据`(m+n)%2`的值来判断中位数的位置。如果为奇数,则直接取`temp[k]`作为结果;如果为偶数,则取`temp[k]`和`temp[k-1]`的平均值作为结果。

5.实验心得

碰到时间复杂度要求log的,肯定用二分查找;但是双指针算法比普通的归并算法还是要好一些。

代码:

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        float result;
        int m=nums1.size();
        int n=nums2.size();
        int k=(m+n)/2;
        vector <int> temp;
        int i=0,j=0;
        int count=0;

        //如两个数组不为空,找到前k+1小数存入新数组
        if(m>0&& n>0){
           while(count<=k){
               if(i==m){
                   temp.push_back(nums2[j++]);
                   count++;
                   continue;
               }
               if(j==n){
                   temp.push_back(nums1[i++]);
                   count++;
                   continue;
               }
               temp.push_back(nums1[i]<=nums2[j]?nums1[(i++)]:nums2[(j++)]);
               count++;
           }
        }
        //其中一个数组为空的情况下
        else if(m==0) temp=nums2;
        else if(n==0) temp=nums1;

        //返回中位数
        if((m+n)%2!=0){
            result=temp[k];
        }
        else {
           result=(float(temp[k])+float(temp[k-1]))/2;
        }
     return result;
    }    
};

(PS:不是我写的)

在 C 语言中,给定两个无序整数数组 A 和 B,要找到它们的交集,可以使用哈希集合(如标准库中的 `std::unordered_set` 或自定义的散列表结构)来解决这个问题。以下是基本步骤: 1. 创建一个空的哈希集合(集合不会包含重复元素)。 2. 遍历数组 A,将每个元素添加到集合中。 3. 再次遍历数组 B,对于集合中已存在的元素(即存在于数组 A 中),记录下来。 4. 返回收集到的所有共同元素。 下面是一个简单的示例代码片段: ```c #include <stdio.h> #include <stdlib.h> #define MAX_SIZE 100 typedef struct Node { int data; struct Node* next; } Node; // 自定义链表辅助函数 Node* createSet(int arr[], int n) { Node* head = NULL; for (int i = 0; i < n; i++) { if (!head) { head = (Node*)malloc(sizeof(Node)); head->data = arr[i]; head->next = NULL; } else { Node* temp = head; while (temp->next != NULL && arr[i] > temp->next->data) temp = temp->next; if (arr[i] <= temp->next->data) continue; Node* newNode = (Node*)malloc(sizeof(Node)); newNode->data = arr[i]; newNode->next = temp->next; temp->next = newNode; } } return head; } int* intersect(int* nums1, int m, int* nums2, int n) { Node* set = createSet(nums1, m); int intersection[MAX_SIZE] = {0}; int count = 0; for (int i = 0; i < n; i++) { if (find(set, nums2[i])) { intersection[count++] = nums2[i]; } } // 如果没有任何交集,返回空指针 if (count == 0) return NULL; // 缩小结果数组大小并返回 intersection[count] = 0; return intersection; } // 查找链表中是否存在指定值 int find(Node* head, int value) { while (head != NULL && head->data != value) head = head->next; return head != NULL; } void printArray(int arr[], int size) { Node* temp = arr; while (temp != NULL) { printf("%d ", temp->data); temp = temp->next; } printf("\n"); } int main() { int nums1[] = {1, 2, 2, 1}; // 示例数组 A int nums2[] = {2, 2}; // 示例数组 B int m = sizeof(nums1) / sizeof(nums1[0]); int n = sizeof(nums2) / sizeof(nums2[0]); int* result = intersect(nums1, m, nums2, n); if (result) { printf("Intersection: "); printArray(result, count); } else { printf("No common elements.\n"); } free(result); // 释放内存 return 0; } ``` 在这个例子中,我们首先创建了一个链表表示数组 A 的唯一元素,然后遍历数组 B,查找链表中存在的元素,并将它们存入新数组 `intersection`。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值