1.实验内容
给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。
2.实验目的
算法的时间复杂度应该为 O(log (m+n)) 。
3.基本思路
碰到时间复杂度要求log的,肯定用二分查找,即每次在现有数据的一半中找,下一次再一半,每次循环可以将查找范围缩小一半。但是我这里用多的是双指针算法,一起查找,不需要归并数组,只需找到中位数的下标,但是复杂度仍然是O(min(m+n))
4.算法分析
首先需要通过判断`m`和`n`的大小来确定两个数组是否为空。
如果两个数组都不为空,则使用双指针法遍历两个数组,将较小的元素依次添加到动态数组`temp`中,直到找到第k+1小的元素为止。
如果其中一个数组为空,则直接将另一个非空数组赋值给`temp`。最后,根据`(m+n)%2`的值来判断中位数的位置。如果为奇数,则直接取`temp[k]`作为结果;如果为偶数,则取`temp[k]`和`temp[k-1]`的平均值作为结果。
5.实验心得
碰到时间复杂度要求log的,肯定用二分查找;但是双指针算法比普通的归并算法还是要好一些。
代码:
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
float result;
int m=nums1.size();
int n=nums2.size();
int k=(m+n)/2;
vector <int> temp;
int i=0,j=0;
int count=0;
//如两个数组不为空,找到前k+1小数存入新数组
if(m>0&& n>0){
while(count<=k){
if(i==m){
temp.push_back(nums2[j++]);
count++;
continue;
}
if(j==n){
temp.push_back(nums1[i++]);
count++;
continue;
}
temp.push_back(nums1[i]<=nums2[j]?nums1[(i++)]:nums2[(j++)]);
count++;
}
}
//其中一个数组为空的情况下
else if(m==0) temp=nums2;
else if(n==0) temp=nums1;
//返回中位数
if((m+n)%2!=0){
result=temp[k];
}
else {
result=(float(temp[k])+float(temp[k-1]))/2;
}
return result;
}
};
(PS:不是我写的)