量子漫步与量子信息:从理论到应用
量子漫步的不同示例及特性
在量子漫步的研究中,不同的初始硬币状态和硬币翻转算子会对量子漫步的结果产生显著影响。
对称初始硬币状态与哈达玛硬币
我们猜测图 10.3 中量子漫步向左偏移的原因是硬币的初始状态被初始化为纯“反面”|0⟩,而不是“正面”和“反面”的等权重对称叠加态 $\frac{1}{\sqrt{2}}(|0⟩ + |1⟩)$。因此,我们重新定义量子漫步的起始位置、初始硬币状态、硬币翻转算子和步长算子如下:
- 起始位置:$|x⟩ = |0⟩$
- 初始硬币状态:$|c⟩ = \frac{1}{\sqrt{2}}(|0⟩ + |1⟩)$
- 硬币翻转算子:
- $|x,0⟩ \xrightarrow{C} \frac{1}{\sqrt{2}}(|x,0⟩ + |x,1⟩)$
- $|x,1⟩ \xrightarrow{C} \frac{1}{\sqrt{2}}(|x,0⟩ - |x,1⟩)$
- 步长算子:
- $|x,0⟩ \xrightarrow{S} |x - 1,0⟩$
- $|x,1⟩ \xrightarrow{S} |x + 1,1⟩$
这里,$C$ 对硬币状态执行哈达玛变换,$S$ 对位置状态执行移位变换。初始硬币状态 $|c⟩$ 是无偏的,因为它是正面和反面的等权重叠加。然而,经过 100 步后绘制量子漫步者的空间概率分布,结果显示该漫步仍然存在偏差,这令人有些意外。
该量子漫步的前五个状态如下:
- $|\psi(0)⟩ = \frac{1}{\sqrt{2}}(|0,0⟩ + |0,1
超级会员免费看
订阅专栏 解锁全文
737

被折叠的 条评论
为什么被折叠?



