信号的分解

转载2. 信号与线性系统——信号的分解 - 知乎

学信号与系统,阶跃函数和冲激函数的定义能理解,也知道这俩函数的作用是信号可以分解为一系列阶跃信号和冲激信号的加权组合,然后任意信号的响应就可以化繁为简,只需要分析冲激信号和阶跃信号的系统响应,就可以知道任意信号的响应。但始终没理解任意信号如何进行分解的?一番查找后,可算是理解了,也理解了为什么冲激函数如此抽象,实际还能用到这种物理模型,明明觉得是很数学的内容?在信号分解的过程中,再次意识到了微分思想的奇妙,

两种分解方式

一、信号分解为一系列阶跃函数的组合

 0\sim \Delta t ~~~f(0)\xi (t)

\Delta t\sim 2\Delta t~~~f(0)+[f(\Delta t)-f(0)]\xi (t-\Delta t)

...

k\Delta t\sim (k+1)\Delta t~~~f[(k-1)\Delta t]+[f(k\Delta t)-f[(k-1)\Delta t]]\xi (t-k\Delta t)

故f(t)可作如下表示

f(t)=f(0)\xi (t)+\sum_{k=1}^{\infty }f[(k-1)\Delta t]+[f(k\Delta t)-f[(k-1)\Delta t]]\xi (t-k\Delta t)

\lim_{\Delta t\rightarrow 0}  化作积分形式 有 f(t)=f(0)\xi (t)+\int_{1}^{\infty }{f}'(\tau )\xi (t-\tau )d\tau

积分形式会出现原函数的倒数,因此在工程上并不经常把信号函数分解为阶跃函数之和。

二、信号分解为一系列冲激函数的组合

 0\sim \Delta t~~~f(0)[\xi (t)-\xi (t-\Delta t)]

\Delta t\sim 2\Delta t~~~f(\Delta t)[\xi (t-\Delta t)-\xi (t-\Delta t-\Delta t)]

...

k\Delta t\sim (k+1)\Delta t~~~f(k\Delta t)[\xi (t-k\Delta t)-\xi (t-k\Delta t-\Delta t)]

故f(t)可作如下表示

f(t)=\sum_{k=0}^{\infty }f(k\Delta t)[\xi (t-k\Delta t)-\xi (t-k\Delta t-\Delta t)]

\lim_{\Delta t\rightarrow 0}  化作积分形式 有f(t)=\int_{0}^{\infty }f(\tau ){\xi }'(t-\tau )d\tau =\int_{0}^{\infty }f(\tau )\delta (t-\tau )d\tau

这不就建立了很数学的冲激函数的物理模型,这种推导过程真的很舒畅,当然了是看到了别人写的自己理解后又进行了一番书写,只是加强巩固下对这块内容的理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值