连续信号(二)| 信号的分解 | 分解成冲激函数之和 +正交分解

信号的分解

(一)分解成冲激函数之和

任意信号 x ( t ) x(t) x(t)可以近似地用一系列等宽度的矩形脉冲之和表示,如下图所示。如果矩形脉冲的宽度为 Δ t \Delta t Δt,则从零时刻起的第k+1个矩形脉冲可表示为 x ( k Δ t ) ∣ u ( t − k Δ t ) − u [ t − ( k + 1 ) Δ t ] ∣ x(k\Delta t)|u(t-k\Delta t)-u[t-(k+1)\Delta t]| x(kΔt)u(tkΔt)u[t(k+1)Δt] x ( t ) x(t) x(t)近似地表示为
x ( t ) ≈ ∑ K = − ∞ + ∞ x ( k Δ t ) ∣ u ( t − k Δ t ) − u [ t − ( k + 1 ) Δ t ] ∣ = ∑ k = − ∞ + ∞ x ( k Δ t ) u ( t − k Δ t ) − u [ t − ( k + 1 ) Δ t ] Δ t Δ t (1) x(t)\approx \sum_{K=-\infty}^{+\infty}x(k\Delta t)|u(t-k\Delta t)-u[t-(k+1)\Delta t]| \\ =\sum_{k=-\infty}^{+\infty}x(k\Delta t)\frac{u(t-k\Delta t)-u[t-(k+1)\Delta t]}{\Delta t}\Delta t \tag{1} x(t)K=+x(kΔt)u(tkΔt)u[t(k+1)Δt]=k=+x(kΔt)Δtu(tkΔt)u[t(k+1)Δt]Δt(1)
Δ t → 0 \Delta t\to 0 Δt0的极限情况下, Δ t → d τ , k Δ t → τ \Delta t\to d\tau,k\Delta t\to \tau Δtdτ,kΔtτ,而
l i m Δ t → 0 u ( t − k Δ t ) − u [ t − ( k + 1 ) Δ t ] Δ t = δ ( t − τ ) lim_{\Delta t\to 0}\frac{u(t-k\Delta t)-u[t-(k+1)\Delta t]}{\Delta t}=\delta(t-\tau) limΔt0Δtu(tkΔt)u[t(k+1)Δt]=δ(tτ)
式(1)就变为
x ( t ) = ∫ − ∞ ∞ x ( τ ) δ ( t − τ ) d τ (2) x(t)=\int_{-\infty}^{\infty}x(\tau)\delta(t-\tau)d\tau \tag{2} x(t)=x(τ)δ(tτ)dτ(2)
式(2)表明,任意信号 x ( t ) x(t) x(t)可以用经平移的无穷多个单位冲激函数加权后的连续和(积分)表示,换言之,任意信号 x ( t ) x(t) x(t)可以分解为一系列具有不同强度的冲激函数。

式(2)的右边即为信号 x ( t ) x(t) x(t) δ ( t ) \delta(t) δ(t)的卷积积分,即
x ( t ) = x ( t ) ∗ δ ( t ) = ∫ − ∞ ∞ x ( τ ) δ ( t − τ ) d τ = ∫ − ∞ ∞ δ ( τ ) x ( t − τ ) d τ x(t)=x(t)*\delta(t)=\int_{-\infty}^{\infty}x(\tau)\delta(t-\tau)d\tau=\int_{-\infty}^{\infty}\delta(\tau)x(t-\tau)d\tau x(t)=x(t)δ(t)=x(τ)δ(tτ)dτ=δ(τ)x(tτ)dτ
这与任意信号与冲激信号的卷积的结果一样。

(二)正交分解

正交分解(正交变换)在描述客观世界的事物中起到十分重要的作用。一个平面矢量可以分解为相互垂直的两个分量,或者说可以用二维正交矢量集的分量组合表示。同理,在n维线性空间中的任意矢量A可以用n维正交矢量集的分量组合表示,n维正交矢量集由相互正交的n个单位矢量组成,即
A = ∑ i = 1 n C i v i \bold A = \sum_{i=1}^nC_i\bold v_i A=i=1nCivi
式中, v i ( i = 1 , 2 , ⋯   , n ) v_i(i=1,2,\cdots,n) vi(i=1,2,,n)为相互正交的单位矢量, C i C_i Ci为对应于 v i v_i vi的系数,实际上它就是矢量 A \bold A A在单位矢量 v i \bold v_i vi方向上的投影。一般情况下n维矢量必须用n个正交分量表示,如果把它表示成不是n个正交分量的线性组合,就会产生误差

空间矢量正交分解的概念可以推广到信号空间,在信号空间中如果能找到一系列相互正交的信号,则以它们为基本信号,信号空间中的任一信号可表示为它们的线性组合。

  1. 正交函数集

( t 1 , t 2 ) (t_1,t_2) (t1,t2)区间内定义的两个非零实函数 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t),若满足
∫ t 1 t 2 f 1 ( t ) f 2 ( t ) d t = 0 (3) \int_{t_1}^{t_2}f_1(t)f_2(t)dt=0 \tag{3} t1t2f1(t)f2(t)dt=0(3)
则称 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t)在区间 ( t 1 , t 2 ) (t_1,t_2) (t1,t2)内正交。

如有n个非零实函数 f 1 ( t ) , f 2 ( t ) , ⋯   , f n ( t ) f_1(t),f_2(t),\cdots,f_n(t) f1(t),f2(t),,fn(t)构成一个函数集。如果这些函数在 ( t 1 , t 2 ) (t_1,t_2) (t1,t2)区间内满足
∫ t 1 t 2 f i ( t ) f j ( t ) d t = { 0 , i ≠ j k i i = j (a) \int_{t_1}^{t_2}f_i(t)f_j(t)dt= \begin{cases} 0, & i\neq j \\ k_i & i=j \end{cases} \tag{a} t1t2fi(t)fj(t)dt={0,kii=ji=j(a)
式中 k i k_i ki为常数,则称此函数集为在区间 ( t 1 , t 2 ) (t_1,t_2) (t1,t2)内的正交函数集。如果在 ( t 1 , t 2 ) (t_1,t_2) (t1,t2)区间内,除正交函数集 { f 1 ( t ) , f 2 ( t ) , ⋯   , f n ( t ) } \{f_1(t),f_2(t),\cdots,f_n(t)\} {f1(t),f2(t),,fn(t)}之外,不存在非零函数 φ ( t ) \varphi(t) φ(t)满足
∫ t 1 t 2 φ ( t ) f i ( t ) d t = 0 , i = 1 , 2 , ⋯   , n (4) \int_{t_1}^{t_2}\varphi(t)f_i(t)dt=0, \quad i=1,2,\cdots,n \tag{4} t1t2φ(t)fi(t)dt=0,i=1,2,,n(4)
则称此正交函数集为完备正交函数集。反言之,如果存在 φ ( t ) \varphi(t) φ(t)满足上式(4),显然它与正交函数集中的每个函数 f i ( t ) ( i = 1 , 2 , ⋯   , n ) f_i(t)(i=1,2,\cdots,n) fi(t)(i=1,2,,n)都正交,那么它本身也应该属于次正交函数集。显然,不包括 φ ( t ) \varphi(t) φ(t)的正交函数集是不完备的。

式(3)表示了函数 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t)的内积为零,这一点与两矢量为正交矢量的定义是一致的。

三角函数集 { 1 , c o s w 0 t , c o s 2 w t 0 , ⋯   , s i n w 0 t , s i n 2 w 0 t , ⋯   } \{1,cosw_0t,cos2wt_0,\cdots,sinw_0t,sin2w_0t,\cdots\} {1,cosw0t,cos2wt0,,sinw0t,sin2w0t,}在区间 ( t 0 , t 0 + T ) (t_0,t_0+T) (t0,t0+T)内为正交函数集,而且是完备正交函数集,其中 T = 2 π w 0 T=\frac{2\pi}{w_0} T=w02π。这是因为
∫ t 0 t 0 + T c o s m w 0 t   c o s n w 0 t d t = { 0 m ≠ n T 2 m = n \int_{t_0}^{t_0+T}cosmw_0t\,cosnw_0tdt = \begin{cases} 0 & m \neq n \\ \frac{T}{2} & m=n \end{cases} t0t0+Tcosmw0tcosnw0tdt={02Tm=nm=n

∫ t 0 t 0 + T s i n   w 0 t   s i n   n w 0 t d t = { 0 m ≠ n T 2 m = n \int_{t_0}^{t_0+T}sin\,w_0t\,sin\,nw_0tdt = \begin{cases} 0 & m \neq n \\ \frac{T}{2} & m=n \end{cases} t0t0+Tsinw0tsinnw0tdt={02Tm=nm=n

∫ t 0 t 0 + T s i n   m w 0 t   c o s n w 0 t d t = 0 , 对 所 有 的 m , n \int_{t_0}^{t_0+T}sin\,mw_0t \,cosnw_0tdt=0 ,对所有的m,n t0t0+Tsinmw0tcosnw0tdt=0mn

显然,集合 { c o s   w 0 t , c o s 2 w 0 t , ⋯   } \{cos\,w_0t,cos2w_0t,\cdots\} {cosw0t,cos2w0t,}在区间 ( t 0 , t 0 + T ) (t_0,t_0+T) (t0,t0+T)内也是正交函数集,但不是完备正交函数集,因为 s i n w o t , s i n 2 w 0 t , ⋯ sinw_ot,sin2w_0t,\cdots sinwot,sin2w0t,函数也与此集合中的函数正交。

对于复函数,两个函数 φ 1 ( t ) \varphi_1(t) φ1(t) φ 2 ( t ) \varphi_2(t) φ2(t)正交是指在区间 ( t 1 , t 2 ) (t_1,t_2) (t1,t2)内,一个函数与另一个函数的共轭复函数满足
∫ t 1 t 2 φ 1 ( t ) φ 2 ∗ ( t ) d t = ∫ t 1 t 2 φ 1 ∗ ( t ) φ 2 ( t ) d t = 0 \int_{t_1}^{t_2}\varphi_1(t)\varphi_2^*(t)dt=\int_{t_1}^{t_2}\varphi_1^*(t)\varphi_2(t)dt=0 t1t2φ1(t)φ2(t)dt=t1t2φ1(t)φ2(t)dt=0
同样,我们也可以把复函数集 { φ 1 ( t ) , φ 2 ( t ) , ⋯   , φ n ( t ) } \{\varphi_1(t),\varphi_2(t),\cdots,\varphi_n(t)\} {φ1(t),φ2(t),,φn(t)}称为正交函数集,只要它们在区间 ( t 1 , t 2 ) (t_1,t_2) (t1,t2)内满足
∫ t 1 t 2 φ i ( t ) φ j ∗ d t = { 0 i ≠ j k i i = j \int_{t_1}^{t_2}\varphi_i(t)\varphi_j^*dt= \begin{cases} 0 & i \neq j \\ k_i & i=j \end{cases} t1t2φi(t)φjdt={0kii=ji=j
显然,复指数函数集 { e j n w 0 t } ( n = 0 , ± 1 , ± 2 , ⋯   ) \{e^{jnw_0t}\}(n=0,\pm 1,\pm 2,\cdots) {ejnw0t}(n=0,±1,±2,)在区间 ( t 0 , t 0 + T ) (t_0,t_0+T) (t0,t0+T)内是完备正交函数集,其中 T = 2 π w 0 T=\frac{2\pi}{w_0} T=w02π。因为
∫ t 0 t 0 + T e j m w 0 t ( e j n w 0 t ) ∗ d t = ∫ t 0 t 0 + T e j ( m − n ) w 0 t d t = { 0 m ≠ n T m = n \int_{t_0}^{t_0+T}e^{jmw_0t}(e^{jnw_0t})^*dt=\int_{t_0}^{t_0+T}e^{j(m-n)w_0t}dt= \begin{cases} 0 & m \neq n \\ T & m=n \end{cases} t0t0+Tejmw0t(ejnw0t)dt=t0t0+Tej(mn)w0tdt={0Tm=nm=n

  1. 信号的正交分解

像矢量空间一样,在信号空间中如有n个函数 f 1 ( t ) 、 f 2 ( t ) 、 ⋯ 、 f n ( t ) f_1(t)、f_2(t)、\cdots、f_n(t) f1(t)f2(t)fn(t)在区间 ( t 1 , t 2 ) (t_1,t_2) (t1,t2)内构成正交函数集,则信号空间中的任一信号 x ( t ) x(t) x(t)可以表示为它们的线性组合,设 x e ( t ) x_e(t) xe(t)为这种表示引起的误差, x ( t ) x(t) x(t)可表示为
x ( t ) = ∑ i = 1 n c i f i ( t ) + x e ( t ) (5) x(t)=\sum_{i=1}^nc_if_i(t)+x_e(t) \tag{5} x(t)=i=1ncifi(t)+xe(t)(5)
现在的问题是如何选取系数 c i ( i = 1 , 2 , ⋯   , n ) c_i(i=1,2,\cdots,n) ci(i=1,2,,n)使这种线性组合表示最接近原信号 x ( t ) x(t) x(t)。显然,不能用平均误差 x ‾ e ( t ) \overline x_e(t) xe(t)最小,而应该用均方误差 x e 2 ( t ) ‾ \overline{x_e^2(t)} xe2(t)最小作为衡量指标。

由式(5)可得
x e 2 ( t ) ‾ = 1 t 2 − t 1 ∫ t 1 t 2 [ x ( t ) − ∑ i = 1 n c i f i ( t ) ] 2 d t \overline{x^2_e(t)}=\frac{1}{t_2-t_1}\int_{t_1}^{t_2}[x(t)-\sum_{i=1}^nc_if_i(t)]^2dt xe2(t)=t2t11t1t2[x(t)i=1ncifi(t)]2dt
为求得使均方误差最小的第j个系数 c j c_j cj,必须使
∂ x e 2 ( t ) ‾ ∂ c j = ∂ ∂ c j { ∫ t 1 t 2 [ x ( t ) − ∑ i = 1 n c i f i ( t ) ] 2 d t } = 0 (6) \frac{\partial \overline{x_e^2(t)}}{\partial c_j}=\frac{\partial}{\partial c_j} \{\int_{t_1}^{t_2}[x(t)-\sum_{i=1}^nc_if_i(t)]^2dt \}=0 \tag{6} cjxe2(t)=cj{t1t2[x(t)i=1ncifi(t)]2dt}=0(6)
注意到正交函数集 { f i ( t ) } ( i = 1 , 2 , ⋯   , n ) \{f_i(t)\}(i=1,2,\cdots,n) {fi(t)}(i=1,2,,n)中的函数满足式(a),以及不含 c j c_j cj的各项对 c j c_j cj的求导等于零,式(6)可以写成
∂ ∂ c j ∫ t 1 t 2 [ − 2 c j x ( t ) f j ( t ) + c j 2 f j 2 ( t ) ] d t = 0 \frac{\partial }{\partial c_j}\int_{t_1}^{t_2}[-2c_jx(t)f_j(t)+c_j^2f_j^2(t)]dt=0 cjt1t2[2cjx(t)fj(t)+cj2fj2(t)]dt=0
求得
c j = ∫ t 1 t 2 x ( t ) f j ( t ) d t ∫ t 1 t 2 f j 2 ( t ) d t = 1 k j ∫ t 1 t 2 x ( t ) f j ( t ) d t c_j=\frac{\int_{t_1}^{t_2}x(t)f_j(t)dt}{\int_{t_1}^{t_2}f_j^2(t)dt}=\frac{1}{k_j}\int_{t_1}^{t_2}x(t)f_j(t)dt cj=t1t2fj2(t)dtt1t2x(t)fj(t)dt=kj1t1t2x(t)fj(t)dt
其中根据式(a),有
∫ t 1 t 2 f j 2 ( t ) d t = k j \int_{t_1}^{t_2}f_j^2(t)dt=k_j t1t2fj2(t)dt=kj
按这样求得的 c j c_j cj使均方误差最小,这时有
x e 2 ( t ) ‾ = 1 t 2 − t 1 ∫ t 1 t 2 [ x ( t ) − ∑ i = 1 n c i f i ( t ) ] 2 d t = 1 t 2 − t 1 [ ∫ t 1 t 2 x 2 ( t ) d t − ∑ i = 1 n c i 2 k i ] (7) \overline{x_e^2(t)}=\frac{1}{t_2-t_1}\int_{t_1}^{t_2}[x(t)-\sum_{i=1}^nc_if_i(t)]^2dt \\ =\frac{1}{t_2-t_1}[\int_{t_1}^{t_2}x^2(t)dt-\sum_{i=1}^nc_i^2k_i] \tag{7} xe2(t)=t2t11t1t2[x(t)i=1ncifi(t)]2dt=t2t11[t1t2x2(t)dti=1nci2ki](7)
如果此时均方误差为零,则式(5)中的误差 x e ( t ) x_e(t) xe(t)为零, x ( t ) x(t) x(t)可以完全由n个正交函数精确描述,即
x ( t ) = ∑ i = 1 n c i f i ( t ) x(t)=\sum_{i=1}^nc_if_i(t) x(t)=i=1ncifi(t)
和n维矢量空间中任意矢量的分解一样,这时正交函数集 { f i ( t ) } ( i = 1 , 2 , ⋯   , n ) \{f_i(t)\}(i=1,2,\cdots,n) {fi(t)}(i=1,2,,n)应该是完备正交函数集。

一般情况下, x ‾ e 2 ( t ) > 0 \overline x_e^2(t)>0 xe2(t)>0,由式(7)可见,用正交函数的线性组合去近似 x ( t ) x(t) x(t)时,所取的项数愈多,引起的均方误差愈小。当 n → ∞ n\to \infty n时, x e 2 ( t ) ‾ = 0 \overline{x_e^2(t)}=0 xe2(t)=0,则得等式
∫ t 1 t 2 x 2 ( t ) d t = ∑ i = 1 ∞ c i 2 k i (8) \int_{t_1}^{t_2}x^2(t)dt=\sum_{i=1}^{\infty}c_i^2k_i \tag{8} t1t2x2(t)dt=i=1ci2ki(8)
这被称为帕斯瓦尔(Parseral)方程的等式表示了信号分解的能量关系,它反映了信号 x ( t ) x(t) x(t)的能量等于此信号在完备正交函数集中各分量的能量之和。

式(8)也反映了一般情况下一个完备的正交函数集应该由无穷多个相互正交的函数组成,即 x ( t ) x(t) x(t)表示为
x ( t ) = ∑ i = 1 ∞ c i f i ( t ) x(t)=\sum_{i=1}^{\infty}c_if_i(t) x(t)=i=1cifi(t)
但是对于不完备的正交函数系,即使 n → ∞ n\to \infty n时也不能使 x e 2 ( t ) ‾ = 0 \overline{x^2_e(t)}=0 xe2(t)=0,这时信号在正交函数集中各分量的能量总和小于信号本身的能量。因此又可以由帕斯瓦尔方程是否成立来考察描述任意信号 x ( t ) x(t) x(t)的正交函数集是否完备。

前面已说明三角函数集 { 1 , c o s   n w 0 t , s i n   n w 0 t } ( n = 1 , 2 , ⋯   , n ) \{1,cos\,nw_0t,sin\,nw_0t\}(n=1,2,\cdots,n) {1,cosnw0t,sinnw0t}(n=1,2,,n) ( t 0 , t 0 + 2 π w 0 ) (t_0,t_0+\frac{2\pi}{w_0}) (t0,t0+w02π)区间内是完备正交函数集,显然在 ( t 0 , t 0 + 2 π w 0 ) (t_0,t_0+\frac{2\pi}{w_0}) (t0,t0+w02π)区间内有定义的任意信号都可以分解(展开)为三角函数表达式,这就是信号的频谱表示。除此之外,其它完备的正交函数集,也可用来对信号进行正交分解,如勒让德(Legendre)函数集、切比雪夫(Chebyshev)多项式集合、沃尔什(Walsh)函数集等。

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
首先,特征分解(Eigenvalue decomposition)和奇异值分解(Singular value decomposition)是两种不同的矩阵分解方法。特征分解适用于方阵,而奇异值分解则适用于所有的矩阵。 特征分解可以将一个方阵分解为特征向量和特征值。对于一个n x n的方阵A,特征向量x和特征值λ满足以下条件: Ax = λx 特征向量x是一个非零向量,λ是一个标量。特征向量可以看作是在变换中保持方向不变的向量,而特征值则表示变换的比例因子。 下面是一个Python函数,可以对方阵进行特征分解: ```python import numpy as np def eigen_decomposition(matrix): """Perform eigen decomposition on a square matrix. Args: matrix (numpy.ndarray): A square matrix. Returns: tuple: A tuple of eigenvalues and eigenvectors. """ eigenvalues, eigenvectors = np.linalg.eig(matrix) return eigenvalues, eigenvectors ``` 接下来是奇异值分解(SVD)。对于一个m x n的矩阵A,奇异值分解可以将其分解为三个矩阵U、S和V: A = USV^T 其中,U是一个m x m的正交矩阵,S是一个m x n的对角矩阵,对角线上的元素为奇异值,V是一个n x n的正交矩阵。 下面是一个Python函数,可以对任意矩阵进行奇异值分解: ```python import numpy as np def svd_decomposition(matrix): """Perform singular value decomposition on a matrix. Args: matrix (numpy.ndarray): A matrix. Returns: tuple: A tuple of U, S and V matrices. """ U, S, V = np.linalg.svd(matrix) return U, S, V ``` 需要注意的是,这两个函数只是简单的示例代码,可能无法处理大型矩阵或数值稳定性较差的情况。在实际应用中,需要对算法进行优化和改进。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值