图像增广
from mxnet import autograd, gluon, image, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
d2l.set_figsize()
img = image.imread('../img/cat1.jpg')
d2l.plt.imshow(img.asnumpy());
读取图片
尺寸为400×500400×500的图像
大多数图像增广方法都具有一定的随机性。为了便于观察图像增广的效果,我们下面定义辅助函数apply
。 此函数在输入图像img
上多次运行图像增广方法aug
并显示所有结果。
def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
Y = [aug(img) for _ in range(num_rows * num_cols)]
d2l.show_images(Y, num_rows, num_cols, scale=scale)
翻转和裁剪
[左右翻转图像]通常不会改变对象的类别。这是最早且最广泛使用的图像增广方法之一。 接下来,我们使用transforms
模块来创建RandomFlipLeftRight
实例,这样就各有50%的几率使图像向左或向右翻转。
apply(img, gluon.data.vision.transforms.RandomFlipLeftRight())
[上下翻转图像]不如左右图像翻转那样常用。但是,至少对于这个示例图像,上下翻转不会妨碍识别。接下来,我们创建一个RandomFlipTopBottom
实例,使图像各有50%的几率向上或向下翻转。
apply(img, gluon.data.vision.transforms.RandomFlipTopBottom())
下面的代码将[随机裁剪]一个面积为原始面积10%到100%的区域,该区域的宽高比从0.5~2之间随机取值。 然后,区域的宽度和高度都被缩放到200像素。 在本节中(除非另有说明),𝑎a和𝑏b之间的随机数指的是在区间[𝑎,𝑏][a,b]中通过均匀采样获得的连续值。
shape_aug = gluon.data.vision.transforms.RandomResizedCrop(
(200, 200), scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)
改变颜色
另一种增广方法是改变颜色。 我们可以改变图像颜色的四个方面:亮度、对比度、饱和度和色调。 在下面的示例中,我们[随机更改图像的亮度],随机值为原始图像的50%(1−0.51−0.5)到150%(1+0.51+0.5)之间。
apply(img, gluon.data.vision.transforms.RandomBrightness(0.5))
同样,我们可以[随机更改图像的色调]。
apply(img, gluon.data.vision.transforms.RandomHue(0.5))
我们还可以创建一个RandomColorJitter
实例,并设置如何同时[随机更改图像的亮度(brightness
)、对比度(contrast
)、饱和度(saturation
)和色调(hue
)]。
color_aug = gluon.data.vision.transforms.RandomColorJitter(
brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
apply(img, color_aug)
[结合多种图像增广方法]
在实践中,我们将结合多种图像增广方法。比如,我们可以通过使用一个Compose
实例来综合上面定义的不同的图像增广方法,并将它们应用到每个图像。
augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.RandomFlipLeftRight(), color_aug, shape_aug])
apply(img, augs)
[使用图像增广进行训练]
让我们使用图像增广来训练模型。 这里,我们使用CIFAR-10数据集,而不是我们之前使用的Fashion-MNIST数据集。 这是因为Fashion-MNIST数据集中对象的位置和大小已被规范化,而CIFAR-10数据集中对象的颜色和大小差异更明显。 CIFAR-10数据集中的前32个训练图像如下所示。
为了在预测过程中得到确切的结果,我们通常对训练样本只进行图像增广,且在预测过程中不使用随机操作的图像增广。 在这里,我们[只使用最简单的随机左右翻转]。 此外,我们使用ToTensor
实例将一批图像转换为深度学习框架所要求的格式,即形状为(批量大小,通道数,高度,宽度)的32位浮点数,取值范围为0~1。
train_augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.RandomFlipLeftRight(),
gluon.data.vision.transforms.ToTensor()])
test_augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.ToTensor()])
接下来,我们定义了一个辅助函数,以便于读取图像和应用图像增广。Gluon数据集提供的transform_first
函数将图像增广应用于每个训练样本的第一个元素(由图像和标签组成),即应用在图像上。
def load_cifar10(is_train, augs, batch_size):
return gluon.data.DataLoader(
gluon.data.vision.CIFAR10(train=is_train).transform_first(augs),
batch_size=batch_size, shuffle=is_train,
num_workers=d2l.get_dataloader_workers())
多GPU训练
我们在CIFAR-10数据集上训练 :numref:sec_resnet
中的ResNet-18模型。 回想一下 :numref:sec_multi_gpu_concise
中对多GPU训练的介绍。 接下来,我们[定义一个函数,使用多GPU对模型进行训练和评估]。
#@save
def train_batch_ch13(net, features, labels, loss, trainer, devices,
split_f=d2l.split_batch):
"""用多GPU进行小批量训练"""
X_shards, y_shards = split_f(features, labels, devices)
with autograd.record():
pred_shards = [net(X_shard) for X_shard in X_shards]
ls = [loss(pred_shard, y_shard) for pred_shard, y_shard
in zip(pred_shards, y_shards)]
for l in ls:
l.backward()
# True标志允许使用过时的梯度,这很有用(例如,在微调BERT中)
trainer.step(labels.shape[0], ignore_stale_grad=True)
train_loss_sum = sum([float(l.sum()) for l in ls])
train_acc_sum = sum(d2l.accuracy(pred_shard, y_shard)
for pred_shard, y_shard in zip(pred_shards, y_shards))
return train_loss_sum, train_acc_sum
#@save
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
devices=d2l.try_all_gpus(), split_f=d2l.split_batch):
"""用多GPU进行模型训练"""
timer, num_batches = d2l.Timer(), len(train_iter)
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],
legend=['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):
# 4个维度:储存训练损失,训练准确度,实例数,特点数
metric = d2l.Accumulator(4)
for i, (features, labels) in enumerate(train_iter):
timer.start()
l, acc = train_batch_ch13(
net, features, labels, loss, trainer, devices, split_f)
metric.add(l, acc, labels.shape[0], labels.size)
timer.stop()
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches,
(metric[0] / metric[2], metric[1] / metric[3],
None))
test_acc = d2l.evaluate_accuracy_gpus(net, test_iter, split_f)
animator.add(epoch + 1, (None, None, test_acc))
print(f'loss {metric[0] / metric[2]:.3f}, train acc '
f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')
print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on '
f'{str(devices)}')
现在,我们可以[定义train_with_data_aug
函数,使用图像增广来训练模型]。该函数获取所有的GPU,并使用Adam作为训练的优化算法,将图像增广应用于训练集,最后调用刚刚定义的用于训练和评估模型的train_ch13
函数。
batch_size, devices, net = 256, d2l.try_all_gpus(), d2l.resnet18(10)
net.initialize(init=init.Xavier(), ctx=devices)
def train_with_data_aug(train_augs, test_augs, net, lr=0.001):
train_iter = load_cifar10(True, train_augs, batch_size)
test_iter = load_cifar10(False, test_augs, batch_size)
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'adam',
{'learning_rate': lr})
train_ch13(net, train_iter, test_iter, loss, trainer, 10, devices)
让我们使用基于随机左右翻转的图像增广来[训练模型]。
train_with_data_aug(train_augs, test_augs, net)