让我们使用图像增广来训练模型。 这里,我们使用CIFAR-10数据集,而不是我们之前使用的Fashion-MNIST数据集。 这是因为Fashion-MNIST数据集中对象的位置和大小已被规范化,而CIFAR-10数据集中对象的颜色和大小差异更明显。 CIFAR-10数据集中的前32个训练图像如下所示。
d2l.show_images(gluon.data.vision.CIFAR10(
train=True)[0:32][0], 4, 8, scale=0.8);
Downloading /opt/mxnet/datasets/cifar10/cifar-10-binary.tar.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/cifar10/cifar-10-binary.tar.gz...
为了在预测过程中得到确切的结果,我们通常对训练样本只进行图像增广,且在预测过程中不使用随机操作的图像增广。 在这里,我们只使用最简单的随机左右翻转。 此外,我们使用ToTensor
实例将一批图像转换为深度学习框架所要求的格式,即形状为(批量大小,通道数,高度,宽度)的32位浮点数,取值范围为0~1。
train_augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.RandomFlipLeftRight(),
gluon.data.vision.transforms.ToTensor()])
test_augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.ToTensor()])
接下来,我们定义了一个辅助函数,以便于读取图像和应用图像增广。Gluon数据集提供的transform_first
函数将图像增广应用于每个训练样本的第一个元素(由图像和标签组成),即应用在图像上。
def load_cifar10(is_train, augs, batch_size):
return gluon.data.DataLoader(
gluon.data.vision.CIFAR10(train=is_train).transform_first(augs),
batch_size=batch_size, shuffle=is_train,
num_workers=d2l.get_dataloader_workers())