数据降维几种方法,主成分分析学习和代码实现

数据降维

好处

减小数据维度和需要的空间,节约模型训练需要的时间。去掉冗余变量,提高算法的准确度,避免模型过拟合,提高模型的鲁棒性

降维的方法

主要是特征选择和特征提取

特征选择

特征选择的方法是从原始数据集中选择出子集,是一种包含关系。没有更改原始的特征空间。

常用的算法:过滤式:对每一维的特征进行打分,给每一维特征赋予权重,这样的权重就代表该特征的重要性,然后根据权重排序。

嵌入式:在确定模型中,挑选出对模型训练有重要意义的属性,例如正则化

包裹式:将子集看为搜索寻优的问题,生成不同组合,再对组合进行评价,与其他组合比较。这样就将子集看成一个优化问题。例如PSO,GA。

特征提取

通过属性间的关系,如组合不同的属性得到新的属性,这样就改变了原来的特征空间。

常用算法:

主成分分析(PCA):将数据投影到低维子空间,忽略分类标签,沿着正交特征轴最大化方差

线性判别分析(LDA):有监督的降维技术,考虑了训练集中的分类信息,试图在线性特征空间中最大化类的可分性

核主成分分析(KPCA):用核技巧和临时投射到更高维度特征空间的方法,最终能把非线性特征组成的数据集压缩到低维子空间,这些类在这里线性可分。

主成分分析

旨在寻找高维数据中存在最大方差的方向,并将其投影到维数等于或者小于原始数据的新子空间。

 基变换

(1,0)和(0,1)是二维空间中的一组基

 当我们更换一组新基:(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})

 (3,2)在新基的坐标为:

 当坐标的投影非常接近原长时,可以降为一维,这就是降维的思想。

 PCA推导过程

目标:通过基变化(特征矩阵W_{n*k})将样本集合X_{m*n}映射到新的k维特征子空间Z_{m*k},并且使得降维后的数据在那个坐标轴尽可能分散,数据分布的离散程度用方差衡量。

(n为特征数,m为样本数)

Z_{m*k}=X_{m*n}W_{n*k}

 数据去中心化:将数据平移到坐标轴中心,数据整体位置相对不变

投影方差:投影如下,可以得到内积的关系

 方差的推导如下:因为去中心化,所以\bar{d}=0

 令C为:

 之后展开可以得到:

 目标函数:因为需要使得数据尽可能分散,所以需要方差尽可能地大,因此可以得到目标函数

 最后化为最值问题,用拉格朗日乘除法求解最值问题:

 把上述关系带入到目标函数中得到新的目标函数

 求解特征值和特征向量

 选取排名前k个特征值对应的特征向量u_{i}合并成 W_{n*k}

 然后就能用下述公式对数据进行降维处理

Z_{m*k}=X_{m*n}W_{n*k}

 PCA算法步骤

1.标准化数据集:避免较大值对矩阵造成影响

2.求协方差矩阵

3.计算协方差矩阵的特征值和特征向量

4.将特征值排序

5.保留前k个最大的特征值对应的特征向量

6.使用特征向量构造投影矩阵

7.套进公式进行映射

python实现PCA

from __future__ import print_function
from sklearn import datasets
import matplotlib.pyplot as plt
import matplotlib.cm as cmx
import matplotlib.colors as colors
import numpy as np
%matplotlib inline

def shuffle_data(X, y, seed=None):
   if seed:
     np.random.seed(seed)

   idx = np.arange(X.shape[0])
   np.random.shuffle(idx)

   return X[idx], y[idx]

# 正规化数据集 X
def normalize(X, axis=-1, p=2):
   lp_norm = np.atleast_1d(np.linalg.norm(X, p, axis))
   lp_norm[lp_norm == 0] = 1
   return X / np.expand_dims(lp_norm, axis)
# 标准化数据集 X
def standardize(X):
   X_std = np.zeros(X.shape)
   mean = X.mean(axis=0)
   std = X.std(axis=0)

   # 做除法运算时请永远记住分母不能等于 0 的情形
   # X_std = (X - X.mean(axis=0)) / X.std(axis=0)
   for col in range(np.shape(X)[1]):
     if std[col]:
       X_std[:, col] = (X_std[:, col] - mean[col]) / std[col]
   return X_std
# 划分数据集为训练集和测试集
def train_test_split(X, y, test_size=0.2, shuffle=True, seed=None):
   if shuffle:
     X, y = shuffle_data(X, y, seed)
   n_train_samples = int(X.shape[0] * (1-test_size))
   x_train, x_test = X[:n_train_samples], X[n_train_samples:]
   y_train, y_test = y[:n_train_samples], y[n_train_samples:]

   return x_train, x_test, y_train, y_test

# 计算矩阵 X 的协方差矩阵
def calculate_covariance_matrix(X, Y=np.empty((0,0))):
   if not Y.any():
      Y = X
   n_samples = np.shape(X)[0]
   covariance_matrix = (1 / (n_samples-1)) * (X - X.mean(axis=0)).T.dot(Y - Y.mean(axis=0))
   return np.array(covariance_matrix, dtype=float)
# 计算数据集 X 每列的方差
def calculate_variance(X):
   n_samples = np.shape(X)[0]
   variance = (1 / n_samples) * np.diag((X - X.mean(axis=0)).T.dot(X - X.mean(axis=0)))
   return variance
# 计算数据集 X 每列的标准差
def calculate_std_dev(X):
   std_dev = np.sqrt(calculate_variance(X))
   return std_dev

# 计算相关系数矩阵
def calculate_correlation_matrix(X, Y=np.empty([0])):
   # 先计算协方差矩阵
   covariance_matrix = calculate_covariance_matrix(X, Y)
   # 计算 X, Y 的标准差
   std_dev_X = np.expand_dims(calculate_std_dev(X), 1)
   std_dev_y = np.expand_dims(calculate_std_dev(Y), 1)
   correlation_matrix = np.divide(covariance_matrix, std_dev_X.dot(std_dev_y.T))

   return np.array(correlation_matrix, dtype=float)

class PCA():
   """
   主成份分析算法 PCA,非监督学习算法.
   """
   def __init__(self):
     self.eigen_values = None
     self.eigen_vectors = None
     self.k = 2

   def transform(self, X):
     """
     将原始数据集 X 通过 PCA 进行降维
     """
     covariance = calculate_covariance_matrix(X)

     # 求解特征值和特征向量
     self.eigen_values, self.eigen_vectors = np.linalg.eig(covariance)

     # 将特征值从大到小进行排序,注意特征向量是按列排的,即 self.eigen_vectors 第 k 列是 self.eigen_values 中第 k 个特征值对应的特征向量
     idx = self.eigen_values.argsort()[::-1]
     eigenvalues = self.eigen_values[idx][:self.k]
     eigenvectors = self.eigen_vectors[:, idx][:, :self.k]
     # 将原始数据集 X 映射到低维空间
     X_transformed = X.dot(eigenvectors)

     return X_transformed

def main():
   # Load the dataset
   data = datasets.load_iris()
   X = data.data
   y = data.target

   # 将数据集 X 映射到低维空间
   X_trans = PCA().transform(X)

   x1 = X_trans[:, 0]
   x2 = X_trans[:, 1]

   cmap = plt.get_cmap('viridis')
   colors = [cmap(i) for i in np.linspace(0, 1, len(np.unique(y)))]

   class_distr = []
   # Plot the different class distributions
   for i, l in enumerate(np.unique(y)):
       _x1 = x1[y == l]
       _x2 = x2[y == l]
       _y = y[y == l]
       class_distr.append(plt.scatter(_x1, _x2, color=colors[i]))

   # Add a legend
   plt.legend(class_distr, y, loc=1)

   # Axis labels
   plt.xlabel('Principal Component 1')
   plt.ylabel('Principal Component 2')
   plt.show()

if __name__ == "__main__":
   main()

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值