太权威了!一口气带你看完深度学习领域引用量最高的10篇论文!!

神经网络已经发展了近82年,从最早的MCP模型到现在的扩散模型(Diffusion Models),可以说都是深度学习领域不可获取的一部分,今天给大家分享深度学习领域引用量最高的10篇论文,希望能帮大家建立更全面的深度学习认知。

这些论文我都打包好了,同时也整理了深度学习领域的必读论文、书籍等。

深度学习领域可复现论文超全整理!!!https://docs.qq.com/doc/DQ25HbWt6WmdOZEta?u=7f01826fa3f140bb8e36e875087997e8&nlc=1


第一篇:Deep Residual Learning for Imag Recognition

2016年在CVPR正式发表,目前引用量为266940

核心贡献:何恺明团队提出残差网络(ResNet),通过引入跳跃连接解决深层神经网络梯度消失问题,首次实现千层网络的稳定训练。其152层ResNet-152在ImageNet分类任务中将错误率降至3.57%,直接推动了AlphaGo、AlphaFold等里程碑式AI系统的诞生;

后续影响开创“超深度模型”时代,启发了DenseNet、EfficientNet等架构创新,成为计算机视觉、药物设计(如蛋白质折叠预测)的核心技术。在工业界,ResNet被集成到自动驾驶感知系统(如特斯拉FSD)、医疗影像分析平台(如DeepMind Health)中,全球超过80%的视觉算法研发团队将其作为基准模型;

科研范式革新首次证明网络深度对表征学习的重要性,推动神经网络从“手工设计特征”向“自动层级特征提取”转变,为后续自监督学习奠定基础。


第二篇:《Attention Is All You Need

是2017年谷歌团队发表的奠基性论文,目前引用量为178957

核心贡献:该论文提出Transformer架构,彻底摒弃传统循环神经网络和卷积神经网络,完全依赖自注意力机制处理序列数据。其核心突破包括:1、通过多头自注意力直接建模序列全局依赖关系,解决RNN长距离依赖难题;2、引入位置编码(正弦/余弦函数)显式表征序列顺序,突破非递归模型的位置感知限制;3、实现全序列并行计算,训练效率较RNN提升数十倍;

后续影响Transformer成为自然语言处理(NLP)的基石,推动BERT、GPT等大语言模型诞生,开启“预训练-微调”时代。其跨领域渗透至计算机视觉(ViT)、生物序列预测(AlphaFold)等,验证了注意力机制的普适性。技术层面,多头注意力、残差连接和层归一化成为现代神经网络标准组件,支撑全球超60万篇论文的实证分析。开源实现(如TensorFlow、PyTorch)加速技术普惠化,成为工业界与学术界的通用工具; 


第三篇:《Random Forests

发布时间2001年,目前引用量152860

核心贡献:通过双重随机化(Bootstrap样本抽样和随机特征选择)构建多棵决策树,并集成结果以提升模型鲁棒性和预测精度。其核心创新包括:1、通过降低单棵树间的相关性抑制过拟合;2、引入袋外误差(OOB Error)机制,无需交叉验证即可实时评估模型性能;3、系统化定义特征重要性评估方法,为后续可解释性工具(如SHAP、LIME)奠定基础。该算法以开源、易用和高效率特性,成为机器学习领域的标杆方法;

后续影响随机森林在跨学科领域广泛应用,例如金融风控(FICO信用评分)、生物信息学(癌症亚型分类)及生态学(遥感数据解析)。Kaggle竞赛中35%的基线模型仍依赖该算法,其开源实现(如scikit-learn)支撑全球超60万篇论文的实证分析。技术层面,它启发了梯度提升树(GBM)、XGBoost等集成模型的发展,并推动特征选择与模型解释性研究,成为工业界与学术界的“通用基础设施”。


第四篇:《ImageNet Classification with Dep Convolutional Neural Networks

发布时间2012年,目前引用量142827

核心贡献:Alex Krizhevsky、Ilya Sutskever和Geoffrey Hinton提出的AlexNet开创了深度学习在计算机视觉领域的革命。其核心创新包括:1、首次构建深度卷积神经网络(5个卷积层+3个全连接层),通过ReLU激活函数替代传统Sigmoid,解决了梯度消失问题并加速训练6倍;2、提出局部响应归一化(LRN)和重叠池化增强特征鲁棒性;3、引入Dropout(随机失活50%神经元)和数据增强技术(随机裁剪、翻转、颜色扰动)大幅降低过拟合;

后续影响AlexNet直接推动计算机视觉进入深度学习时代,其架构成为VGG、ResNet等经典模型的基础。在工业界,其开源实现(Caffe、PyTorch)加速了GPU在AI训练中的普及,支撑了自动驾驶、医学影像分析等应用。技术层面,ReLU和Dropout成为神经网络标准组件,数据增强方法被广泛沿用。截至2025年,该论文引用量超14万次,是ImageNet竞赛史上最具里程碑意义的成果之一。

 


第五篇:《U-Net: Convolutional Networks fr Biomedical Image Segmentation

发布时间2015年,目前引用量110378

核心贡献:论文提出U-Net架构,开创了医学图像分割的新范式。其核心创新包括:1、对称编码器-解码器设计,通过收缩路径(下采样)提取上下文特征,扩展路径(上采样)恢复空间分辨率,结合跳跃连接(skip connections)融合多尺度特征,解决传统滑动窗口方法的冗余计算与局部信息局限;2、Overlap-tile策略,利用镜像扩充解决图像分块输入时的边缘信息缺失问题;3、随机弹性形变数据增强,模拟生物组织真实形变,提升小样本场景下的模型泛化能力。该模型在2015年ISBI细胞跟踪挑战赛中以显著优势获胜,仅需30张标注图像即可完成端到端训练;

后续影响U-Net成为医学图像分割的基准模型,广泛应用于细胞分割、肿瘤检测、遥感图像分析等领域。其开源实现(如PyTorch、TensorFlow)推动技术普惠化,支撑全球超60万篇论文的实证研究。技术层面,U-Net直接启发了U-Net++、Attention U-Net等变体,并推动残差连接、空洞卷积等模块的优化设计,计算量降低达160倍。在交叉领域,其架构被迁移至地质系统可靠性分析、牙齿结构量化等场景,验证了通用性。


第六篇:《Generative Adversarial Networks

发布时间2014年,目前引用量为81139

核心贡献:Ian Goodfellow提出的生成对抗网络(GAN)开创了无监督生成模型的新范式。其核心创新包括:1、对抗训练框架,通过生成器(Generator)与判别器(Discriminator)的动态博弈,实现数据分布的逼近,数学上以极小极大博弈公式(minGmaxDV(D,G))定义训练目标;2、无监督学习机制,无需标注数据即可生成高维复杂数据(如图像、文本),突破传统生成模型对显式概率分布的依赖;3、灵活性与通用性,生成器通过噪声输入生成多样化样本,判别器通过对抗反馈优化生成质量。该论文首次系统化验证了对抗学习在数据生成中的有效性,为后续生成模型奠定理论基础。

后续影响GAN迅速成为人工智能领域的基石技术,其应用涵盖图像合成(如Deepfake、艺术创作)、医学影像生成(如MRI-CT转换)、数据增强(如小样本场景模拟)等领域。技术层面,GAN启发了WGAN、CycleGAN、StyleGAN等变体,并推动多模态生成、3D建模等前沿方向。据《Knowledge-Based Systems》研究,基于GAN的合成CT图像误差率较传统方法降低1.43%,而工业界(如OpenAI、Google)则依赖GAN构建大语言模型与生成经济生态

 


第七篇:《Glove: Global Vectors for Word epresentation

发布时间2014年,目前引用量45663

核心贡献:该论文提出GloVe模型,创新性地融合了全局词共现统计与局部上下文特征,解决了传统词向量模型的局限性。其核心突破包括:1、基于词-词共现矩阵设计加权最小二乘损失函数,通过概率比值(如 P(wk∣wj)P(wk∣wi))捕捉词间语义关系,而非单纯依赖共现频率;2、引入分段权重函数 f(Xij),抑制高频词(如“the”“is”)对模型的过度影响,同时保留低频词的有效信息;3、通过双向量架构(中心词向量与上下文向量)提升语义表征的对称性与鲁棒性。实验显示,GloVe在词类比任务中以75%准确率刷新纪录,并在命名实体识别任务中较Word2Vec提升5%-10%;

后续影响GloVe成为自然语言处理(NLP)的词向量基准模型,推动词嵌入技术标准化。其预训练向量被BERT、ELMo等模型广泛采用,支撑语义搜索、机器翻译等场景。技术层面,GloVe的损失函数设计启发了跨领域表示学习(如知识图谱嵌入),而开源实现(如Stanford NLP工具包)加速了工业界对大规模语料的高效训练,位列ACL会议史上最具影响力的词向量研究成果之一。


第八篇:《Explaining and Harnessing Adverarial Examples

发布时间2014年,目前引用量25062

核心贡献:首次从高维线性行为角度解释了对抗样本的成因,挑战了此前认为对抗样本源于“深度网络非线性”的假设。其核心突破包括:1、提出快速梯度符号法(FGSM),通过单步梯度方向扰动快速生成对抗样本,将生成效率提升数十倍;2、证明对抗样本的跨模型泛化性源于不同模型学习到的权重向量方向一致性;3、将对抗训练系统化为极小极大优化问题,首次验证对抗样本数据增强的正则化效果,较传统方法(如Dropout)显著提升模型鲁棒性;

后续影响该研究奠定了对抗样本领域的理论基础,直接推动PGD、C&W等更强攻击方法的诞生。技术层面,对抗训练成为主流防御范式,支撑自动驾驶、医疗影像等安全敏感场景的模型鲁棒性优化。其提出的对抗可转移性概念启发了黑盒攻击研究,而FGSM代码开源加速了对抗机器学习工具链(如CleverHans、Foolbox)的生态构建,位列ICLR会议史上最具影响力的对抗学习研究之一。

 


第九篇:Mastering the Game of Go with Dep Neural Networks and Tree Search

发布时间2016年,目前引用量21639

核心贡献:首次实现人工智能在围棋领域超越人类顶尖选手,其创新融合了深度神经网络与蒙特卡洛树搜索(MCTS),开创了复杂博弈问题的新范式。核心突破包括:1、多阶段训练框架,通过监督学习策略网络(SL Policy Network)模拟人类专家棋谱(准确率57%),再结合强化学习策略网络(RL Policy Network)优化自博弈胜率(提升80%以上,最终训练价值网络(Value Network)预测棋局胜负概率;2、双网络协同搜索,将策略网络用于缩小搜索宽度(生成高概率落子),价值网络评估棋局胜率以减少搜索深度,结合MCTS实现高效决策;3、硬件并行优化,通过GPU加速神经网络推理(3ms/步)与CPU多线程模拟博弈,解决传统MCTS算力瓶颈;

后续影响AlphaGo推动了人工智能技术的三大变革:1、技术范式上,其“神经网络+树搜索”框架被迁移至蛋白质折叠(AlphaFold)、药物设计等领域,验证了通用智能算法的潜力;2、行业应用中,强化学习与蒙特卡洛方法结合,支撑自动驾驶决策、金融风险模拟等场景;3、开源生态方面,其训练代码与架构设计启发了AlphaGo Zero等后续模型,后者通过纯自我对弈实现无人类先验知识学习,成为Nature期刊计算机科学领域被引最高论文之一。


第十篇:《Playing Atari with Deep Reinforement Learning

发布时间2013年,目前用量17428

核心贡献:首次将深度强化学习(DRL)与卷积神经网络(CNN)结合,开创了从原始像素端到端学习控制策略的新范式。其核心突破包括:1、提出深度Q网络(DQN),通过Q-learning算法变体直接处理高维视觉输入(210×160 RGB像素),利用CNN提取空间特征并输出动作价值函数;2、设计经验回放机制(Experience Replay),通过随机采样历史状态转移数据打破序列相关性,缓解非平稳分布问题;3、引入固定目标网络(Target Network),延迟更新目标Q值以稳定训练过程,避免Q值震荡;

后续影响该研究奠定了深度强化学习的理论基础,直接推动AlphaGo、Rainbow等算法的演进。技术层面,经验回放机制成为DRL标准组件,而DQN的“端到端学习”范式被迁移至机器人控制、自动驾驶等场景。工业界通过开源框架(如TensorFlow、PyTorch)加速技术落地,截至2025年论文引用量超4.5万次,成为ICML史上最具影响力的DRL论文之一。此外,其方法论启发了多模态强化学习、元学习等前沿方向,验证了“感知-决策”一体化模型的通用性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值