- 博客(11)
- 收藏
- 关注
原创 GLCM 灰度共生矩阵
右侧对应的灰度共生矩阵,左上角第一行与第一列的坐标(1, 1)包含值1,原因在于水平方向上,相距一个像素值,当前像素跟水平右侧相邻像素只有一个是1、1相邻的像素值(灰度级别)对;此外对正常的灰度图像来说,最小灰度值为0,最大的灰度值为255,共计256个灰度级别,所以GLCM的大小为256x256,但是我们可以对灰度级别进行降维操作,比如可以每8个灰度值表示一个level,这样原来256x256大小的共生矩阵就可以改成256/8 * 256 /8 = 32x32的共生矩阵。距离(大于等于1个像素单位)
2023-09-08 15:53:38 762 1
原创 SE-Net网络详解
Squeeze excitation network 以下简称SE-NetSE是一个在卷积特征图通道上分配Attention的模块,可嵌入到其他的的网络结构中。
2023-08-05 14:18:06 1735 1
原创 深度学习基础(TensorFlow)
机器学习是人工智能的子研究领域,核心思想是通过经验提升性能,有监督学习非监督学习和强化学习范式;深度学习是机器学习的子研究领域,是现在非常流行的研究方法,性能非常强大,在语音图像文本上都取得了革命性进展,它可以指深度神经网络的训练过程,深度学习侧重于神经网络的搭建,训练和优化;神经网络是一个很抽象的概念,一个神经网络层的计算包括线性和非线性激活。它们之间的关系是机器学习包含深度学习包含神经网络。
2023-06-28 16:30:59 200 1
原创 胶囊网络(Capsule Networks)
胶囊网络(Capsule Networks)是深度学习三巨头之一的Geoffrey Hinton提出的一种全新的神经网络。胶囊网络基于一种新的结构——胶囊(Capsule),通过与现有的卷积神经网络(CNN)相结合,从而在一些图像分类的数据上取得了非常优越的性能。何谓胶囊?简单来说,。因此,胶囊网络中的每层神经网络都包含了多个胶囊基本单元,这些胶囊与上层网络中的胶囊进行交互传递。
2023-06-27 22:39:51 2578 2
原创 马尔可夫随机场(MRF)与隐马尔可夫模型
马尔可夫随机场(Markov Random Field,简称MRF)是典型的马尔可夫网,这是一种著名的无向图模型。图中每个结点表示一个或一组变量,结点之间的边表示两个变量之间的依赖关系。马尔可夫随机场有一组势函数(potential functions),亦称“因子”(factor),这是定义在变量子集上的非负实函数,主要用于定义概率分布函数。上图显示出一个简单的马尔可夫随机场。对于图中结点的一个子集,若其中任意两结点间都有边连接,则称该结点子集为一个“团”(clique)。
2023-06-27 21:57:46 1642
原创 t-SNE降维算法详解(附matlab代码)
t-SNE的主要用途是可视化和探索高维数据。它由Laurens van der Maatens和Geoffrey Hinton在JMLR第九卷(2008年)中开发并出版。t-SNE的主要目标是将多维数据集转换为低维数据集。相对于其他的降维算法,对于数据可视化而言t-SNE的效果最好。如果我们将t-SNE应用于n维数据,它将智能地将n维数据映射到3d甚至2d数据,并且原始数据的相对相似性非常好。与PCA一样,t-SNE不是线性降维技术,它遵循非线性,这是它可以捕获高维数据的复杂流形结构的主要原因。
2023-06-27 21:08:42 3490 2
原创 Random Walk算法详解(附python代码)
一维随机游走问题:设一个质点(随机游走者)沿着一条直线运动,单位时间内只能运动一个单位长度,且只能停留在该直线上的整数点,假设在时刻t,该质点位于直线上的点i,那么在时刻t +1,该质点的位置有三种可能:①以p 的概率跳到整数点i-1②或以q的概率跳到点i+1③或以r=1-p-q的概率继续停留在点i由于每一步的结果都是独立的,且每种情况发生的概率之和都为1,则该过程服从伯努利分布,称为贝努利随机游走过程。当 p=q=0.5时,即质点在下一时刻到达其相邻点的概率是相等的,称为简单的随机游走。
2023-06-27 20:20:48 5627
原创 Floyd算法详解(附matlab代码)
Floyd算法又称为插点法,是一种利用的思想寻找给定的中多源点之间的算法,与类似。该算法名称以创始人之一、1978年获得者、计算机科学系教授命名。Floyd算法可以给出网络中任意两个节点之间的最短路径,因此它是比Dijkstra更一般的算法。Floyd算法的思想是将n个节点的网络表示为n行n列的矩阵,而矩阵中的元素(i,j)表示从节点i到节点j的距离dij,如果两点直接没有边相连,则相应的元素就是无穷(∞).
2023-06-27 14:45:43 5153 2
原创 Dijkstra算法详解(附MATLAB代码)
按路径长度递增次序产生算法:把顶点集合V分成两组:(1) S: 已求出的顶点的集合 (初始时只含有源点V0)(2) V-S=T: 尚未确定的顶点集合将T中顶点按递增的次序加入到S中,保证:(1)从源点VO到S中其他各顶点的长度都不大于从VO到T中任何顶点的最短路径长度(2)每个顶点对应一个距离值S中顶点: 从VO到此顶点的长度T中顶点: 从V0到此顶点的只包括S中顶点作中间顶点的最短路径长度依据:可以证明V0到T中顶点Vk的,或是从VO到Vk的直接路径的权值;
2023-06-26 22:48:09 1723 1
原创 【图数据挖掘】图的基本表示
求MST的一般算法可描述为:针对图G,从空树T开始,往集合T中逐条选择并加入n-1条安全边(u,v),最终生成一棵含n-1条边的MST。②在无向图中,任一顶点i的度为第i列(或第i行)所有非零元素的个数,在有向图中顶点i的出度为第i行所有非零元素的个数,而入度为第i列所有非零元素的个数。节点的出度是指从该节点出发的边的条数。当一条边(u,v)加入T时,必须保证T∪{(u,v)}仍是MST的子集,我们将这样的边称为T的安全边。P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的。
2023-06-22 20:30:03 306 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人