【图数据挖掘】图的基本表示

目录

引言

哥尼斯堡七桥问题

欧拉定理

图论定理

拓扑公式

图的本体设计

生成树

图的生成树和森林

最小生成树

 算法描述

图的种类

无向图

有向图

图的存储表示

节点的度

邻接矩阵

拉普拉斯矩阵


引言

哥尼斯堡七桥问题

        18世纪初普鲁士的哥尼斯堡,有一条河穿过,河上有两个小岛,有七座桥把两个岛与河岸联系起来(如概述图)。有个人提出一个问题:一个步行者怎样才能不重复、不遗漏地一次走完七座桥,最后回到出发点。后来大数学家欧拉把它转化成一个几何问题——一笔画问题。他不仅解决了此问题,且给出了连通图可以一笔画的充要条件是:奇点的数目不是0个就是2个(连到一点的数目如果是奇数条,就称为奇点;如果是偶数条,就称为偶点。要想一笔画成,必须中间点均是偶点,也就是有来路必有另一条去路,奇点只可能在两端。因此任何图能一笔画成,奇点要么没有,要么在两端).

欧拉定理

        欧拉在推断哥尼斯堡七桥问题时,将七桥和岸边抽象为图,欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图

图论定理

        如果一个联通平面图G由v个顶点,e条边,f个面,那么:

v-e+f=2

        平面图G包括k个连通分支,个顶点,e条边,f个面,那么:

v-e+f=k+1

拓扑公式

        V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数

        如果P可以同胚于一个球面(可以通俗地理解为能吹胀成一个球面),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。

图的本体设计

        在数学中,图是描述于一组对象的结构,其中某些对象对在某种意义上是“相关的”。这些对象对应于称为顶点的数学抽象(也称为节点或点),并且每个相关的顶点对都称为边(也称为链接或线)。通常,图形以图解形式描绘为顶点的一组点或环,并通过边的线或曲线连接。 图形是离散数学的研究对象之一。下图描述了一幅图的基本结构,一般顶点用N来表示,边用E来表示,由顶点和边组成的图表示为G(N,E).

生成树

图的生成树和森林

        显示了一个无向连通图的生成树,双线圈表示的顶点为生成树的根结点

最小生成树

        在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v) 代表此的权重,若存在 T 为 E 的子集且为无循环图,使得联通所有结点的的 w(T) 最小,则此 T 为 G 的最小生成树

 算法描述

        求MST的一般算法可描述为:针对图G,从空树T开始,往集合T中逐条选择并加入n-1条安全边(u,v),最终生成一棵含n-1条边的MST。

        当一条边(u,v)加入T时,必须保证T∪{(u,v)}仍是MST的子集,我们将这样的边称为T的安全边。

图的种类

无向图

        边没有方向的图称为无向图。

        无向图G=<V,E>,其中:

        1.V是非空集合,称为顶点集

        2.E是V中元素构成的无序二元组的集合,称为边集

有向图

        如果给图的每条边规定一个方向,那么得到的图称为有向图。在有向图中,与一个节点相关联的边有出边和入边之分。

图的存储表示

节点的度

        节点度是指和该节点相关联的边的条数,又称关联度。特别地,对于有向图,节点的入度 是指进入该节点的边的条数;节点的出度是指从该节点出发的边的条数。

邻接矩阵

        分为两部分:V和E集合,其中,V是顶点,E是边。因此,用一个一维数组存放图中所有顶点数据;用一个二维数组存放顶点间关系(边或弧)的数据,这个二维数组称为邻接矩阵。邻接矩阵又分为有向图邻接矩阵和无向图邻接矩阵.

        邻接矩阵(Adjacency Matrix)是表示顶点之间相邻关系的矩阵。设G=(V,E)是一个图,其中V={v1,v2,…,vn}  。G的邻接矩阵是一个具有下列性质的n阶方阵:

①对无向图而言,邻接矩阵一定是对称的,而且主对角线一定为零(在此仅讨论无向简单图),副对角线不一定为0,有向图则不一定如此。

②在无向图中,任一顶点i的度为第i列(或第i行)所有非零元素的个数,在有向图中顶点i的出度为第i行所有非零元素的个数,而入度为第i列所有非零元素的个数。

③用邻接矩阵法表示图共需要n^2个空间,由于无向图的邻接矩阵一定具有对称关系,所以扣除对角线为零外,仅需要存储上三角形或下三角形的数据即可,因此仅需要n(n-1)/2个空间。

拉普拉斯矩阵

        给定有n个顶点的图G,它的拉普拉斯矩L阵定义为:

L=D-A

        其中D为度矩阵,A为邻接矩阵.度矩阵在有向图中,只需要考虑出度或者入度中的一个。

  1. 拉普拉斯矩阵是半正定矩阵

  2. 特征值中0出现的次数就是图连通区域的个数;

  3. 最小特征值是0,因为拉普拉斯矩阵每一行的和均为0;

  4. 最小非零特征值是图的代数连通度

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

行走的参考文献

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值