已知空间圆弧曲线的两点以及圆心半径,用matlab画出圆弧

已知空间圆弧曲线的两点以及圆心半径,用matlab画出圆弧。

两点坐标:p1 = (p1(1),p1(2),p1(3));p2 = (p2(1),p2(2),p2(3));圆心坐标:c=(c(1),c(2),c(3))

代码:

function pot2plot3(p1,p2,c,r)
% 画空间圆弧
%   输入弧起点p1,终点p2,圆心c
%% 平面 法向量  
p12 = p2 - p1;
pc1 = p1 - c;
pc2 = p2 - c;
pc1 = pc1/norm(pc1);
pc2 = pc2/norm(pc2);
n = cross(p12,pc2);%法向量
n = n/norm(n);
u = pc1/norm(pc1);
v = cross(u,n);%以u为起始向量,满足右手定则坐标系,则夹角thetam是从u向v的
v = v/norm(v);
% v = -1.*v/norm(v); 
thetam = acos(dot(pc1,pc2)/norm(pc1)*norm(pc2));
theta = (0:thetam/100:thetam)';
c1=c(1)*ones(size(theta,1),1);
c2=c(2)*ones(size(theta,1),1);
c3=c(3)*ones(size(theta,1),1);
x=c1+r*u(1)*cos(theta)+r*v(1)*sin(theta);%圆上各点的x坐标
y=c2+r*u(2)*cos(theta)+r*v(2)*sin(theta);%圆上各点的y坐标
z=c3+r*u(3)*cos(theta)+r*v(3)*sin(theta);%圆上各点的z坐标
plot3(x,y,z,'r');
% hold on
% plot3([p1(1),c(1)],[p1(2),c(2)],[p1(3),c(3)],'g');%半径1
% hold on
% plot3([p2(1),c(1)],[p2(2),c(2)],[p2(3),c(3)],'b');%半径2
end
MATLAB中,如果你需要计算两个圆弧的交点,通常会涉及到解析几何和一些代数方程。假设我们有两个圆弧,分别由圆心\( C_1 \)和\( C_2 \),半径分别为\( r_1 \)和\( r_2 \),并且它们的中心都在直角坐标系中。我们需要找到这两条弧线的交点,这需要找两条圆的方程相等的情况。 首先,你需要明确圆的方程形式,对于一般情况,圆的方程可以表示为: \[ (x - h_1)^2 + (y - k_1)^2 = r_1^2 \] \[ (x - h_2)^2 + (y - k_2)^2 = r_2^2 \] 其中,\((h_1, k_1)\)和\((h_2, k_2)\)分别是圆心的坐标。 接下来,我们将尝试找满足上述两个方程的解。由于圆弧可能有0、1或2个交点,我们需要考虑两种情况: 1. 如果两圆内切,即圆心距小于半径之和,那么没有交点; 2. 如果两圆外切或相交,我们将得到1或2个交点。 为了简化,我们可以先假设两个圆是相交的,然后通过消元法或代入法求解。这里给一个简化的示例代码,它并不涵盖所有边界条件检查,但在处理简单交点的情况下可能会有所帮助: ```matlab function [x, y] = find_intersection(h1, k1, r1, h2, k2, r2) % 圆心坐标 c1 = [h1; k1]; c2 = [h2; k2]; % 半径 r12 = sqrt(sum((c1 - c2).^2)); % 圆心距 % 如果圆心距等于半径之和,则圆相切 if abs(r12 - (r1 + r2)) < eps disp('Two circles are tangent.'); return; end % 否则,假设交叉,解方程组 A = [-2*(h1-h2); -2*(k1-k2)]; B = [h1*h1 + k1*k1 - r1^2; h2*h2 + k2*k2 - r2^2]; % 求解交点的x和y try x = A \ B(1); y = A \ B(2); catch disp('No intersection found.'); return; end % 返回交点坐标,如果存在 if isreal(x) && isreal(y) [x, y] = deal(x, y); else disp('Intersection points are complex.'); end end % 调用函数,例如两圆弧的交点 [h1, k1, r1, h2, k2, r2] = ... % 输入两圆的具体信息 [x, y] = find_intersection(h1, k1, r1, h2, k2, r2); ```
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值