You are given an array a consisting of n integers a1, ..., an. In one operation, you can choose 2 elements ai and aj in which ai is divisible by aj and transform ai to aj.
A number x is said to be divisible by a number y if x can be divided by y and the result is an exact whole number. For example, 15 is divisible by 3, because 15÷ 3 = 5 exactly, but 9 is not divisible by 2 because 9÷ 2 is 4 with 1 left over.
Your task is to find the minimum sum of the array a that can be obtained by making as many transform operations as you want. Can you?
Input
The first line contains an integer T (1 ≤ T ≤ 100) specifying the number of test cases.
The first line of each test case contains an integer n (1 ≤ n ≤ 105), in which n is the size of array a. Then a line follows containing n integers a1, ..., an (1 ≤ ai ≤ 106), giving array a.
The sum of n overall test cases does not exceed 3 × 106.
Output
For each test case, print a single line containing the minimum sum of the array athat can be obtained after making as many transform operations as you want.
Example
Input
1
5
2 2 3 6 6
Output
11
题意:给出一个长度为n的数列a,通过无限次的操作使得这个数列的和最小,操作规则为:若aj能够被ai整除,则aj=ai
解题思路:用vis[i]数组记录i这个数字出现的次数,使i倍增,则i*j必能被i整除,所以i*j都可转化为i,即vis[i]=vis[i]+vis[i*j],vis[i*j]=0,最后求和即可。
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#define MOD 1000000007
using namespace std;
int vis[1000006];
int main(){
int t;
scanf("%d",&t);
while(t--){
int n;
scanf("%d",&n);
memset(vis,0,sizeof(vis));
__int64 i,j;
__int64 a[100005];
for(i=1;i<=n;i++){
scanf("%I64d",&a[i]);
vis[a[i]]++;
}
for(i=1;i<=1e6;i++){
if(vis[i]>0){
for(j=2;i*j<=1e6;j++){
if(vis[i*j]>0){
vis[i]+=vis[i*j];
vis[i*j]=0;
}
}
}
}
__int64 ans=0;
for(i=1;i<=1e6;i++){
ans+=vis[i]*i;
}
printf("%I64d\n",ans);
}