网上看了很多同学关于把皇后问题的算法,有的写的非常不错,也有的写的一般。
总体来讲就是很难看懂。。。(应该是笔者实力不济吧。。)
下面要介绍的一种方法是基于网友的算法,具体作者找不到了,不过他的代码看起来非常简练。很容易懂。
我自己分析了一下,加强了注释和运算速度,算是对回溯法的一种理解吧。
希望大家一起学习~
#include <stdio.h>
#define N 8 //棋盘大小
int column[N+1]; // 列记录数组,如果被置1,说明该列存在皇后
int main_diagonal[2*N+1]; //主对角线上是否有皇后
int sub_diagonal[2*N+1]; // 副对角线上是否有皇后
int queen[N+1]; //皇后放置位置信息,如queen[1]=3,表示第一行第三列放置一个皇后
int counter; //解的数量
void Output_answer()
{
register int i, j;
printf("\n第 %d种答案\n", ++counter);
for(i = 1; i <= N; i++)
{
for(j = 1; j <= N; j++)
{
if(queen[i] == j) //需要放置皇后
{
printf(" Q");
}
else
{
printf(" .");
}
}
printf("\n");
}
}
void EQueen(int rows)
{
register int columns;
if(rows > N) //找到一个解,输出
{
Output_answer();
}
else
{
for(columns = 1; columns <= N; columns++)
{
if(column[columns] == 0 && main_diagonal[rows+columns] == 0 && sub_diagonal[columns-rows+N] == 0)//上方,右上方,左上方三个方向均不存在其他皇后
{
//两个点关于直线y=x对称,其横纵坐标满足x1+y1=x2+y2,
//两个点关于直线y=-x对称,其横纵坐标满足y2-x2=y1-x1,
//对应到下标索引上,前者rows+columns,后者columns-rows+N
queen[rows] = columns; //记录皇后位置
column[columns] = main_diagonal[rows+columns] = sub_diagonal[columns-rows+N] = 1;//记录三个方向的攻击信息
EQueen(rows+1); //深度搜索回溯
column[columns] = main_diagonal[rows+columns] = sub_diagonal[columns-rows+N] = 0;//回溯回来,清除这个点的攻击信息,继续下一次遍历查找
}
}
}
}
int main(void)
{
EQueen(1); //从第一行开始回溯
return 0;
}