How does XVCL work?

How does XVCL work?

 

Change is the heart of software maintenance, reuse and generally – software development. Therefore, by mastering change, we tackle some major challenges in software engineering.

XVCL is a mechanism for change. Change plans in XVCL, both human- and machine-readable, are imposed on conventional programs, written in one of the existing programming languages. In general, we can apply XVCL on top of any language that has textual representation, independently of the language syntax and semantics, and no matter what the language is used for. XVCL structures express the syntax and semantics of CHANGE, not the syntax and semantics of programs. XVCL does not introduce any “higher level abstract specification” language.

The following is a general idea of the XVCL technique. Code written in a programming language is partitioned into XVCL structures called x-frames. An x-frame may correspond to any program unit (or part of it) such as a subsystem, interface, program component, group of classes, class, method, attribute declarations, fragment of method implementation – just anything. X-frames turn conventional program units into generic, adaptable and reusable program building blocks: From small number of x-frames, we can generate many concrete components, classes or methods, differing in functional requirements, design decisions or platforms. We create x-frames by generalizing pieces of working programs, and/or by top-down domain analysis.

Partitioning into x-frames is guided by changeability concerns and is not constrained by the rules of the underlying programming language. We apply XVCL whenever conventional program decompositions do not yield programs changeable enough.

Figure 1. An overview of the XVCL solution

We design x-frames (that is, instrument code for change and package into x-frames) for each source of change. We often refer to x-frames as meta-components, as they facilitate generation of concrete program components. X-frames that result from that process are organized into layers of an x-frame architecture, in XVCL jargon called an x-framework. An x-framework creates a virtual window that makes it easier for developers to maintain or reuse programs (depends on the objective). In the reuse via product line approach, an x-framework implements the concept of a software product line architecture.

Suppose we have developed an Editor, in Java or C++ ( Figure 1). But then we see that there are plenty of redundancies among parts of code that implement menus, toolbars, etc. which complicate maintenance. We can “frame” parts to alleviate problems. By framing code for menus – we create a generic menu x-frame capable of generating any menu that we need. We can do the same for toolbars. So rather than having multiple instances of similar program structures (clones), at the x-framework level, we have a single, unified representation, capable of generating all the instances that we need. By unifying similarities in the x-framework, not only do we simplify maintenance, but also foster reuse: Our x-framework facilitates generation of custom Editors, with extra features (e.g., grammar checker) , or with modified existing features. Generating new menus, toolbars and other recurring structures in the presentation layer do not require any new programming. Business logic for new features, of course, must be implemented and an x-framework extended accordingly. However, many of such enhancements just follow patterns already implemented and directly visible at the level of the x-framework – therefore easy to implement.

X-frames represent both, change plans and base program components (such as editor, toolbar, menu in Figure 1). Each x-frame specifies changes for the lower-lever x-frames, and receives changes from the upper-level x-frames ( Figure 1). Therefore, x-frames are both active and passive. This allows us to specify changes of any required granularity level, and with any scope (the higher the x-frame, the wider scope of control).

The top level x-frame called SPC contains change plan specifications for all the modifications related to a given source of change. In Figure 1, the SPC specifies changes required to produce a Notepad from the generic Editor x-framework. Change plans are described in terms of x-frame composition rules and x-frame adaptations, expressed as XVCL commands. These commands are embedded in the code contained in x-frames.

The XVCL processor interprets an x-framework to produce a custom program specified in the SPC. The XVCL processor tr averses x-frames as indicated by XVCL commands, in the depth-first order, starting with the SPC. The processor reads each visited x-frame in sequential order and emits the code contained in the x-frame “as is”. Whenever the processor encounters an XVCL command, the command is interpreted to generate the required variant of the source code. An x-framework represents a family of programs ready for change. Having interpreted the x-framework for a given SPC, the XVCL processor outputs a program with required changes (e.g., Notepad in Figure 1).

Flexible “composition with adaptation” of x-frames is the key means to achieve, changeability, non-redundancy and, therefore, ease of reuse and maintenance. XVCL offers a number of mechanisms to achieve flexible “composition with adaptation”. The <adapt> command includes a lower-level x-frame into an upper-level x-frame ( Figure 1), with possible adaptations. Meta-variables and meta-expressions provide a basic parameterization mechanism to inject genericity into x-frames. Typically, class or method names, data types, keywords, operators or even short algorithmic fragments are represented as meta-expressions that can be then instantiated by the processor, according to the context. However, XVCL parameters reach far beyond that and, at times, we may see the whole sub-hierarchy of x-frames as an actual parameter.

A <set> command assigns a value to a meta-variable. During processing of x-frames, values of meta-variables propagate from the x-frame where the value of a meta-variable is set, down to lower-level x-frames. While each x-frame usually can set default values for its meta-variables, values assigned to meta-variables in higher-level x-frames take precedence over the locally assigned default values. Thanks to this scoping mechanism, x-frames become generic and adaptable, with potential for reuse in many contexts. Other XVCL commands that help us design generic and adaptable x-frames include <select>, <insert> into <break> and <while>. We use <select> command to direct processing into one of the many pre-defined branches (called options), based on the value of a meta-variable. With <insert> command, we can modify x-frames at designated <break> points in arbitrary ways. A <while> command allows us to iterate over certain sections of a x-frame, with each iteration generating custom output. Using these mechanisms, we can tune solutions for ease of change, reuse and “normalize” for non-redundancy.

XVCL is a low level mechanism – it is an assembly language for change management. The rules are simple and elementary – they emulate the way programmers work with code. Yet, these rules are sufficient to conveniently express any conceivable type of change – from small change at the code statement level to architectural changes involving components, interfaces or subsystems. A developer can see and control every detail of the generation rules and generation process. The situation is transparent – a developer gets exactly what he/she had designed into a program and XVCL structures. There are no hidden rules, no abstractions disconnected from code. The generated output contains only code that a developer means to be produced. All this is meant to be that way and is a critical factor that makes our solution (we believe, any general-purpose solution) practical and effective.

There is a huge advantage to keep the heart of the generation mechanism minimal, simple and efficient. On top of that mechanism, we can build domain-specific solutions that hide low level details, and this should be done to boost productivity in that domain. But the fundamental principle of operation – as the nature of change - remains the same, across programming languages and application domains.

 
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值