贴瓷砖(动态规划)

 关键:找出递推公式

如图

两列有3种贴法,前面n-2列的贴法乘上后2列的贴法,即3*dp[n-2],

4列有2种贴法,就有2*dp[n-4]

同理有2*dp[n-6],2*dp[n-8]...

所以dp[n]=3*dp[n-2]+2*dp[n-4]+2*dp[n-6]+...

dp[n-2]=3*dp[n-4]+2*dp[n-6]+2*dp[n-8]+...

两式作差,有dp[n]-dp[n-2]=3*dp[n-2]-dp[n-4]

即dp[n]=4*dp[n-2]-dp[n-4]

(由于有乘积关系,故临界值dp[0]应为1)

#include <stdio.h>
#include <string.h>
int main()
{
	int n,pd[31];
	memset(pd,0,sizeof(pd));
	pd[0]=1;pd[2]=3;
	for(int i=4;i<31;i+=2) pd[i]=4*pd[i-2]-pd[i-4];
	while(1)
	{
		scanf("%d",&n);
		if(n==-1) break;
		else printf("%d\n",pd[n]);
	}
	return 0;
}
### LeetCode 铺瓷砖算法题目解决方案 #### 问题描述 对于给定尺寸的矩形区域,使用不同大小的地砖铺设整个区域。目标是计算完成铺设所需的最少地砖数量。 #### 方案分析 针对此类问题的一种有效方法是利用动态规划(DP),其核心在于构建状态转移方程并初始化边界条件。具体到本题场景下: - 定义 `dp[i][j]` 表示前 i 行 j 列已经被完全覆盖的情况下所需最小地砖数目。 - 对于每一个格子 `(i,j)` ,考虑两种情况: - 如果当前位置为空,则尝试放置一块合适大小的地砖,并更新相应的 dp 值; - 否则跳过该位置继续处理下一个未被占用的位置。 为了简化实现过程,在实际编码时通常会引入辅助函数用于枚举所有可能形状的地砖组合方式,并据此调整当前的状态值。 考虑到输入规模较小(n=2,m=3), 可以直接穷尽所有可能性来求解最优解[^2]. ```python def numTilings(N): MOD = int(1e9+7) @lru_cache(None) def dfs(i, status): if i >= N: return not status res = (dfs(i + 1, status) * (status == 0 or status == 3)) % MOD for s in range((not bool(status & 1)) << 1 | (not bool(status & 2))): res += dfs(i + 1, ((s ^ 3) & status) | (((~s)&1)<<1|(s&1))) return res % MOD return dfs(0, 0) ``` 此代码片段展示了如何运用记忆化搜索技术优化暴力破解的方法。这里定义了一个递归函数 `dfs()` 来模拟每一步的选择过程;并通过位运算技巧高效表示每一行的状态变化规律。最终结果保存在一个全局变量中以便后续调用查询。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值