应该还有比因式分解更好的方法

题目

证明:对 ∀ a ∈ Z \forall a\in\mathbb{Z} aZ,都有 a 25 ≡ a ( m o d    30 ) a^{25}\equiv a(\mod 30) a25a(mod30).

我的想法

没想到啥特别好的方法.首先将问题转化一下, a 25 ≡ a ( m o d    30 ) ⇔ 30 ∣ ( a 25 − a ) ⇔ 30 ∣ a ( a 24 − 1 ) a^{25}\equiv a(\mod 30)\Leftrightarrow 30\mid(a^{25}-a)\Leftrightarrow 30\mid a(a^{24}-1) a25a(mod30)30(a25a)30a(a241).

为啥这样写呢,因为我把我能想到的性质罗列了一下,对于这么高次幂的未知数的同余性质我真的没有什么好方法,而且30是一个质因子比较多的数,所以我想把含 a a a的部分放在一起然后因式分解.

我们对30进行质因子分解有: 30 = 1 × 2 × 3 × 5 30=1\times2\times3\times5 30=1×2×3×5.所以我们只要证明除1外(1是平凡的)的3个因子整除 a ( a 24 − 1 ) a(a^{24-1}) a(a241)即可.

下面对 a ( a 24 − 1 ) a(a^{24}-1) a(a241)因式分解.首先不断利用平方差公式,再不断利用立方和/差公式可得:
a ( a 24 − 1 ) = a ( a 12 + 1 ) ( a 12 − 1 ) = a ( a 12 + 1 ) ( a 6 + 1 ) ( a 6 − 1 ) = a ( a 12 + 1 ) ( a 6 + 1 ) ( a 3 + 1 ) ( a 3 − 1 ) = a ( a 12 + 1 ) ( a 6 + 1 ) ( a + 1 ) ( a 2 − a + 1 ) ( a − 1 ) ( a 2 + a + 1 ) = a ( a 12 + 1 ) ( a 2 + 1 ) ( a 4 − a 2 + 1 ) ( a + 1 )   ( a 2 − a + 1 ) ( a − 1 ) ( a 2 + a + 1 ) = a ( a − 1 ) ( a + 1 ) ( a 2 + 1 )   ( a 12 + 1 ) ( a 4 − a 2 + 1 ) ( a 2 − a + 1 ) ( a 2 + a + 1 ) \begin{aligned} a(a^{24}-1)&=a(a^{12}+1)(a^{12}-1)\\ &=a(a^{12}+1)(a^6+1)(a^6-1)\\ &=a(a^{12}+1)(a^6+1)(a^3+1)(a^3-1)\\ &=a(a^{12}+1)(a^6+1)(a+1)(a^2-a+1)(a-1)(a^2+a+1)\\ &=a(a^{12}+1)(a^2+1)(a^4-a^2+1)(a+1)\\ &\quad \,(a^2-a+1)(a-1)(a^2+a+1)\\ &=a(a-1)(a+1)(a^2+1)\\ &\quad \,(a^{12}+1)(a^4-a^2+1)(a^2-a+1)(a^2+a+1) \end{aligned} a(a241)=a(a12+1)(a121)=a(a12+1)(a6+1)(a61)=a(a12+1)(a6+1)(a3+1)(a31)=a(a12+1)(a6+1)(a+1)(a2a+1)(a1)(a2+a+1)=a(a12+1)(a2+1)(a4a2+1)(a+1)(a2a+1)(a1)(a2+a+1)=a(a1)(a+1)(a2+1)(a12+1)(a4a2+1)(a2a+1)(a2+a+1)
由于 ( a − 1 ) , a (a-1),a (a1),a是连续的两个整数,所以 2 ∣ a ( a − 1 ) 2\mid a(a-1) 2a(a1).

由于 ( a − 1 ) , a , ( a + 1 ) (a-1),a,(a+1) (a1),a,(a+1)是连续的三个整数,所以 3 ∣ a ( a − 1 ) ( a + 1 ) 3\mid a(a-1)(a+1) 3a(a1)(a+1).

现在我们对 a ( a − 1 ) ( a + 1 ) a(a-1)(a+1) a(a1)(a+1)进行观察.通过观察发现,当且仅当 a ≡ 2 ( m o d    5 ) a\equiv 2(\mod 5) a2(mod5) a ≡ 3 ( m o d    5 ) a\equiv 3(\mod 5) a3(mod5) 5 ∤ a ( a − 1 ) ( a + 1 ) 5\nmid a(a-1)(a+1) 5a(a1)(a+1),否则三个连续的正数中必有一个是5的倍数.如果我们能证到 a ≡ 2 ( m o d    5 ) a\equiv 2(\mod 5) a2(mod5) a ≡ 3 ( m o d    5 ) a\equiv 3(\mod 5) a3(mod5) 5 ∣ a ( a 24 − 1 ) 5\mid a(a^{24-1}) 5a(a241),那么我们就完成了证明.

显然,若 a ≡ 2 ( m o d    5 ) a\equiv 2(\mod 5) a2(mod5),则有 a 2 + 1 ∣ 5 a^2+1\mid 5 a2+15;若 a ≡ 3 ( m o d    5 ) a\equiv 3(\mod 5) a3(mod5),同样有 a 2 + 1 ∣ 5 a^2+1\mid 5 a2+15.而我们发现 a 2 + 1 a^2+1 a2+1确实是 a ( a 24 − 1 ) a(a^{24}-1) a(a241)的因子,所以此时有 5 ∣ a ( a 24 − 1 ) 5\mid a(a^{24}-1) 5a(a241).

综上, 30 ∣ a ( a 24 − 1 ) 30\mid a(a^{24}-1) 30a(a241).证毕.

有趣的是, a 25 ≡ a 5 ≡ a ( m o d    30 ) a^{25}\equiv a^5\equiv a(\mod30) a25a5a(mod30),不断换元可以得到 a 5 k ≡ a ( m o d    30 ) a^{5^k}\equiv a(\mod 30) a5ka(mod30).

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值