使用Word2Vec算法实现古诗自动生成实战

一、任务背景与技术路线

文化传承需求
通过机器学习算法学习3万首唐诗宋词语料,实现输入关键词(如"明月"、"秋风")即可生成符合平仄韵律的五言/七言诗句

技术架构

复制

下载

[语料库] → [数据预处理] → [Word2Vec训练] → [向量空间构建] → [生成模型] → [格律校验] → [古诗输出]
二、核心算法原理

Word2Vec双模式对比

图表

代码

下载

上下文预测中心词

中心词预测上下文

CBOW

适合高频词训练

Skip-Gram

适合低频词训练

词向量数学本质
设词表大小为V,嵌入维度为d,通过神经网络学习隐藏层权重矩阵:

WV×d=[w⃗1w⃗2⋮w⃗V]WV×d​=​w1​w2​⋮wV​​​

最终每个词的向量即为对应行向量

三、完整实现代码(PyTorch版)
1. 数据预处理

python

复制

下载

import jieba
import re

def preprocess_poems(file_path):
    # 加载10万首古诗语料库
    with open('chinese_poems.txt', 'r', encoding='utf-8') as f:
        poems = [line.strip() for line in f]
    
    # 特殊处理古诗格式
    processed = []
    for p in poems:
        # 保留中文字符和标点
        cleaned = re.sub(r'[^\u4e00-\u9fa5,。!?、]', '', p)  
        # 按字切分(古诗生成需要字向量)
        tokens = list(cleaned)  
        processed.append(tokens)
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万能小贤哥

感谢大捞

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值