计算机视觉
文章平均质量分 79
佛系调参
这个作者很懒,什么都没留下…
展开
-
Pytorch加载数据集
退出 exit 或者 ctrl+D,退出当前窗口 tmux detach 退出当前窗口,但不会删除 重新进入detach的某会话 tmux attach -t <编号> tmux attach -t <name> 彻底杀死窗口快捷键...原创 2022-04-16 22:01:46 · 1581 阅读 · 0 评论 -
shuffleNet系列
目录分组卷积分组卷积的矛盾——计算量分组卷积的矛盾——特征通信channel shuffleShuffleNet V1ShuffleNet基本单元ShuffleNet网络结构对比实验ShuffleNet V2设计理念网络结构对比实验分组卷积Group convolution是将输入层的不同特征图进行分组,然后采用不同的卷积核再对各个组进行卷积,这样会降低卷积的计算量。因为一般的卷积都是在所有的输入特征图上做卷积,可以说是全通道卷积,这是一种通道密集连.原创 2020-08-02 16:39:31 · 3486 阅读 · 0 评论 -
MobileNet系列
MobileNet V1V1采用了depthwise separable convolution,即由depthwise卷积和pointwise卷积两步组成深度可分离卷积基本单元如下图所示,图中的应为ReLU6ReLU6=min(max(0,x), 6),见下图通过深度可分离卷积,计算量将会下降,当卷积核尺寸等于3时,深度可分离卷积比传统卷积少8到9倍的计算量。最后给出v1的整个模型结构,该网络有28层。可以看出,该网络基本去除了pool层,使用stride来进行降采样(难道是.原创 2020-08-02 16:00:01 · 440 阅读 · 0 评论 -
halcon-基于正常样本的深度学习缺陷检测
halcon20.05示例程序* * Deep learning anomaly detection example.* * This example demonstrates the general workflow for anomaly detection* based on deep learning.* * The workflow typically consists of four steps which are described here:* 1. Dataset pr原创 2020-07-13 23:30:47 · 5061 阅读 · 7 评论 -
DenseNet图解
第一层为DenseNet 整体结构 第二层是Dense block结构 第三层是每一个Dense layer的结构注意:每一次增加32个feature maps,然后和前面一层layer的feature maps相叠加,而不是和前面所有层的feature maps相叠加。(从信息流的观点来看,等同于和前面所有层feature maps相叠加)每一个Dense layer中,先用1*1...原创 2019-06-12 16:05:41 · 2336 阅读 · 0 评论 -
深度学习图像降噪资源总结
What's new in image denoising - 图像去噪进展[attention][降噪][Arxiv 2019] Real Image Denoising..原创 2019-07-31 17:19:52 · 2470 阅读 · 0 评论 -
CBAM: Convolutional Block Attention Module—— channel attention + spatial attention
影响卷积神经网络的几大因素:Depth: VGG, ResNet Width: GoogLeNet Cardinality: Xception, ResNeXt Attention:channel attention, spatial attentionAttention在人类感知系统中扮演了重要角色,人类视觉系统的一大重要性质是人类并不是试图一次处理完整个场景,与此相反,为了更好地捕捉...原创 2019-07-31 17:24:01 · 5360 阅读 · 0 评论 -
yolov3详解
每个边界框的中心点坐标均为相对于其对应的cell左上点坐标的偏移,此时即保证每个边界框的中心点均落在其对应的cell中。其计算公式如下:上式中:即为预测的边界框bounding box在feature map中的中心点坐标和长宽; 即为网络学习的相对于先验框(prior,anchor)的offsets; 是各个cell的左上点坐标;即为先验框(prior,anchor)相对于...原创 2019-08-01 11:11:11 · 5942 阅读 · 0 评论 -
nms and soft nms
nms:步骤:按打分最高到最低将BBox排序 ,例如:A B C D E F A的分数最高,保留。从B-E与A分别求重叠率IoU,假设B、D与A的IoU大于阈值,那么B和D可以认为是重复标记去除 余下C E F,重复前面两步代码:import numpy as np def nms_cpu_py(dets,thre): x1 = dets[:,0] y1 = dets[...原创 2019-08-06 19:15:36 · 325 阅读 · 0 评论 -
faster rcnn 总结
原创 2019-03-07 23:13:08 · 194 阅读 · 0 评论 -
transfer learning
需要迁移学习的原因:大多数场景的数据量很小,不足以重头开始训练一个新的CNN,且花费很多时间迁移学习分为两类:finetuning:在新的任务上更新预训练模型(pretrained model)的所有参数 feature extraction:固定预训练模型前面卷积层的参数不变,只更新最后全连接层(输出层)的权重。叫此方法为feature extraction是因为将预训练的卷积层作为一...原创 2018-12-14 21:18:44 · 201 阅读 · 0 评论 -
运行SSD-Tensorflow的eval_ssd_network.py
最近在学SSD-Tensorflow,在测试集上跑eval_ssd_network.py遇到问题:报错:TypeError: can not convert a tuple into a tensor or operation:我的命令行是:python eval_ssd_network.py --dataset_dir=tfrecords\test --dataset_spl...原创 2018-12-01 22:50:22 · 2337 阅读 · 13 评论 -
Resnet笔记
ResNet在2015年被提出,在ImageNet比赛classification任务上获得第一名,因为它“简单与实用”并存,之后很多方法都建立在ResNet50或者ResNet101的基础上完成的,检测,分割,识别等领域都纷纷使用ResNet,Alpha zero也使用了ResNet,所以可见ResNet确实很好用。下面我们从实用的角度去看看ResNet。1.ResNet意义随着网络的...转载 2018-08-24 20:41:34 · 336 阅读 · 0 评论 -
CV专业术语总结
MS COCO(common objects in contexts)是一个经典目标检测数据集(Microsoft公司建立的) PASCAL VOC(The PASCAL Visual Object Classification)是目标检测,分类,分割等领域一个有名的数据集 SOTA(state of the art)当前最高水平 image path图像块 mAP:(Mean A...原创 2018-10-19 15:03:13 · 2080 阅读 · 0 评论 -
GoogLeNet 论文笔记
目录1. 目标检测算法R-CNN分为两步:2. Motivation:简单的增加网络宽度和深度和两个弊端:3.思路:4.Inception module: 5.这种结构的两大好处:6.结构参数表7、1*1卷积作用8、GoogLeNet结构9. 两个辅助分类器10. 模型和训练、测试方法等更多细节11. ILSVRC Detection Challenge...原创 2018-10-19 11:29:04 · 633 阅读 · 0 评论 -
Inception v2_batch normalization 论文笔记
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift——2015摘要:由于在训练过程中前层参数的改变,导致每一层的输入的分布发生变化,所以训练深层神经网络是复杂的。这也导致需要小的学习率和小心的参数初始化工作,因此减轻了训练速度,也因为陷入饱和非线性加剧了模型训练...原创 2018-10-20 14:52:42 · 256 阅读 · 0 评论 -
tf.layers.conv2d
tf.layers.conv2d( inputs, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), activation=None, use_bias=T...原创 2018-10-23 11:31:37 · 1226 阅读 · 0 评论 -
R-CNN
2014年加州大学伯克利分校的Ross B. Girshick提出R-CNN算法,其在效果上超越同期的Yann Lecun提出的端到端方法OverFeat算法,其算法结构也成为后续two stage的经典结构。 R-CNN算法利用选择性搜索(Selective Search)算法评测相邻图像子块的特征相似度,通过对合并后的相似图像区域打分,选择出感兴趣区域的候选框作为样本输入到卷积神经网络结...原创 2018-10-24 11:18:33 · 273 阅读 · 0 评论 -
SPP-net
针对卷积神经网络重复运算问题,2015年微软研究院的何恺明等提出一种SPP-Net算法,通过在卷积层和全连接层之间加入空间金字塔池化结构(Spatial Pyramid Pooling)代替R-CNN算法在输入卷积神经网络前对各个候选区域进行剪裁、缩放操作使其图像子块尺寸一致的做法。利用空间金字塔池化结构有效避免了R-CNN算法对图像区域剪裁、缩放操作导致的图像物体剪裁不全以及形状扭曲等问题,...原创 2018-10-24 15:42:14 · 261 阅读 · 0 评论 -
Fast R-CNN
R-CNN缺点训练是个multi-stage pipeline(CNN提取特征、通过log loss 微调网络、训练SVMs、bounding-box regression) 训练费时间和空间 目标检测很慢 SPPnet 缺点训练是个multi-stage pipeline(CNN提取特征、通过log loss 微调网络、训练SVMs、bounding-box regression...原创 2018-10-24 19:55:33 · 150 阅读 · 0 评论 -
mAP的概念
mAP(mean average precision)均值平均精度:是目标检测中常用的模型衡量指标,可以理解为:数据集中所有类的预测平均精度的均值。下面按照IoU==> precision ==> average precision ==>mean average precision进行介绍:IoU:预测框和真实标记框ground truth的交并比。只有IoU大于某一个...原创 2018-11-27 17:27:20 · 1199 阅读 · 1 评论