题面
题意
令W(R)表示字符串W的反串
给出一个字符串,问其中最长的WW(R)WW(R)的长度是多少.
做法
求的字符串是个回文串,而且可以分成两个一样的偶数长度的字符串,那么可以考虑枚举两个相同字符串中间的空隙x并考虑右边那个字符串中间的空隙y的最大值.
首先用马拉车算法预处理出mx数组表示以某个空隙为中间的回文串的长度的一半,根据回文串的性质,不难得出以i为中心,长度的一半小于mx[i]的字符串也是回文串,因此可以合法回文串需要满足以下条件:
1.y-x<=mx[y] —–> y-mx[y]<=x
2.2*(y-x)<=mx[x]—–>y<=mx[x]/2+x
也就是说可以先根据y-mx[y]排序,对于每个x,将x-1与x之间的y-mx[y]加入set,每次利用upper_bound找到目前set中小于等于mx[x]/2+x的最大y来不断更新答案即可.
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<set>
#define N 500100
using namespace std;
int n,tmp[N<<1],mx[N],ans,num[N],root,tt,mid,r;
char str[N],a[N<<1];
set<int>se;
set<int>::iterator it;
inline bool cmp(int u,int v)
{
return u-mx[u]<v-mx[v];
}
int main()
{
int i,j,t;
cin>>n;
scanf("%s",str+1);
for(i=1; i<=n; i++)
{
a[i<<1]=str[i];
a[(i<<1)+1]='*';
}
n=n*2+1;
a[0]='$',a[1]='*',a[n+1]='&';
for(i=1; i<=n; i++)
{
t= i<r?min(tmp[mid*2-i],r-i+1):1;
for(; a[i+t]==a[i-t]; t++);
tmp[i]=t;
if(i+t-1>r)
{
r=i+t-1;
mid=i;
}
}
for(i=3; i<n; i+=2)
{
mx[i/2]=(tmp[i]-1)/2;
// cout<<mx[i/2]<<" ";
}
n=n/2-1;
for(i=1; i<=n; i++)
{
num[i]=i;
}
sort(num+1,num+n+1,cmp);
for(i=1,j=1; i<=n; i++)
{
for(; j<=n&&num[j]-mx[num[j]]<=i; se.insert(num[j]),j++);
it=se.upper_bound(mx[i]/2+i);
if(it==se.begin()) continue;
ans=max(ans,(*--it-i)*4);
}
cout<<ans;
}