- 博客(2)
- 收藏
- 关注
原创 李宏毅深度学习笔记-P3&P4-回归
第二部分的内容主要讲的是有监督学习(supervised learning)的任务之一:回归-regression,本篇主要介绍了如何通过梯度下降法(gradient descent)得到目标函数,并使用正则化(regularization)的方法解决训练数据过拟合(overfitting)的问题,对目标函数进行修正,从而在检验测试数据时得到更好的结果。
2022-11-16 23:59:07 358
原创 李宏毅深度学习笔记-P1机器学习介绍
好了,今天开始了李宏毅先生机器学习课程的自学,千里之行始于足下,P1介绍篇章是一个介绍性的概括章节,主要讲清楚了这门学科的几个基本问题。 总结起来这一节主要说了两个问题,when & what,如下图1所示是机器学习发展的大致脉络,就我看来主要有两个时间点,第一个是19世纪80年代,此时AI界开始使用机器学习的方法来实现人工智能的目标(个人理解是放弃了handcrafted的规则推导,使用的是以概率论为基础的机器学习),第二个是2010年左右开始的深入,提出了深度学习的概念,是在基础的机器学习模
2022-11-14 23:52:30 299
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人