李宏毅深度学习笔记-P3&P4-回归

本文探讨了有监督学习中的回归任务,通过梯度下降法寻找目标函数,并利用正则化解决过拟合问题。以神奇宝贝CP值预测为例,介绍了线性回归模型的构建,并解释了学习率、误差计算以及训练与测试数据的误差比较。最后,讨论了过拟合现象及正则化的解决方案。
摘要由CSDN通过智能技术生成

      第二部分的内容主要讲的是有监督学习(supervised learning)的任务之一:回归-regression,本篇主要介绍了如何通过梯度下降法(gradient descent)得到目标函数,并使用正则化(regularization)的方法解决训练数据过拟合(overfitting)的问题,对目标函数进行修正,从而在检验测试数据时得到更好的结果。

       回归(regression)是有监督学习的一种task,适合的场景有股票价格预测,自动驾驶和推荐系统等,本篇以神奇宝贝中的CP值预测为例,寻找进化前后CP值之间的关系,输入进化前的CP值和其他特征信息,计算出进化之后CP值。定义损失函数L由于评价模型的适合程度,损失函数即样例预测进化后的CP值与实际进化后的CP值之间的方差之和,方差之和越小,则目标函数约接近实际结果,因此该问题转化为求L的全局最小值,应用回归方法,从最简单的线性关系构造目标函数,y = kx+b,其中x为进化前的CP值,b为常数,y为进化之后的CP值,L的全局最小值处是切线斜率为0处,也即其微分为0处,此处我们使用梯度下降法来求解,梯度下降法会先选取一对初始值k0,b0,L先对k求偏导(此时b取b0),然后对k0左右各取值,再计算偏导数,如果k0左侧偏导数值更大则目标点在k0右边,需增加值,反之则目标点在k0左边,需减少值,假设k0调整后为k1,同理也可计算出b0的调整值b1,如此循环往复,直至微分值为0或者接近

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值