李宏毅深度学习笔记-P1机器学习介绍

本文概述了机器学习的发展历程,重点介绍了两个关键时期:19世纪80年代的概率论基础的机器学习,以及2010年后的深度学习。机器学习旨在模拟人类能力,如图像和语音识别,其核心是寻找输入与输出间的映射函数。学习过程分为函数集选择、训练数据评分和最佳函数选择。机器学习任务包括回归、分类和结构化学习,其中分类又分为二元和多元。此外,文章还提到了强化学习,它依赖于反馈调整策略以达到最优解。
摘要由CSDN通过智能技术生成

       好了,今天开始了李宏毅先生机器学习课程的自学,千里之行始于足下,P1介绍篇章是一个介绍性的概括章节,主要讲清楚了这门学科的几个基本问题。

       总结起来这一节主要说了两个问题,when & what,如下图1所示是机器学习发展的大致脉络,就我看来主要有两个时间点,第一个是19世纪80年代,此时AI界开始使用机器学习的方法来实现人工智能的目标(个人理解是放弃了handcrafted的规则推导,使用的是以概率论为基础的机器学习),第二个是2010年左右开始的深入,提出了深度学习的概念,是在基础的机器学习模型/方法上提出了新的模型和方法,用于解决更复杂的场景问题。 

图1

       在了解了机器学习学科发展的时间脉络的基础上,接下来介绍的是机器学习是什么的议题。从目的来看,机器学习是让机器拥有人的能力,比如识别图像,识别文字亦或是识别语音,如下图2

图2

把这个问题转化一下,其实就是一个映射,无论是从图像到猫的映射,还是文字到语义的映射,其本质就是一个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值