Python数据分析相比于sql、Excel、Bi工具组合使用的优势是什么?

本文讨论了Python在数据查询、分析、机器学习、数据可视化等方面的优势,与SQL、Excel和BI工具对比,强调了Python在处理大规模数据、自动化任务和广泛应用中的价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

还是有一些明显优势的,看表格可能会更清晰一些。

特点SQLExcelBI工具Python
数据查询和过滤强大的查询语言有过滤和排序功能通常有查询功能Pandas库提供强大的数据处理能力
数据处理和清洗有限的处理能力适用于小规模数据通常提供基本的数据清洗功能Pandas库提供高级数据清洗工具
数据可视化有限的图表支持丰富的图表和图形提供各种数据可视化工具Matplotlib、Seaborn提供定制化图表支持
统计分析基本统计函数有一些基础统计功能通常有一些统计工具SciPy、Statsmodels提供高级统计分析
机器学习和深度学习不适用不适用不适用Scikit-learn、TensorFlow、PyTorch等提供机器学习和深度学习支持
大数据处理不适用不适用BI工具通常适用于大规模数据PySpark等提供大规模数据处理框架
脚本编写和自动化不适用有宏和脚本功能有一些自动化功能可以编写脚本进行自动化任务
开源生态系统闭源闭源闭源开源,丰富的库和工具生态系统
灵活性和通用性专注于数据库查询适用于广泛场景适用于特定场景通用编程语言,适用于广泛任务

我们来说一些实际应用场景,看看Python的优势在哪里。

假设我们有一个销售数据集,想要构建一个销售预测模型,这时候就可以使用Python,Scikit-learn或其他机器学习库,你可以训练一个预测模型,根据历史销售数据进行预测。这涉及到特征工程、模型训练和评估,这在Python中更为方便。

或者我们电商行业想要分析客户的反馈和评论,从而了解产品的用户满意度 使用NLTK或Spacy等库,你可以进行文本分析和情感分析,以便了解客户对产品的情感倾向。

再比如我们需要做可视化报告来给领导展示业务关键指标。Matplotlib和Seaborn等库,你可以创建高度定制化的图表和可视化效果,以更好地传达复杂的分析结果。这在BI工具中可能需要更多的配置和调整。

最后,尽管SQL和Excel很强大,但是Python脚本可以让我们编写自动化任务,定期执行数据提取、清晰、分析,以确保数据的及时更新和准确性。


建议大家再学习Python的时候,基础知识边看边练,多多参考Python的中文手册。

资源+课程+经验放下文啦!

一、Python自学

要在学习Python前明确我们的目标是什么。是为了数据分析?web开发?机器学习?还是什么其他目标。这将会觉得大家的学习路径和重点,可以参考下图了解。

但是不管目标是什么,首先要学的是Python基础知识,包括变量、数据类型、控制流、函数、类等。在理解这些基础知识的基础上,我们才能更好的理解复杂的概念。

Python入门教程:

Python学习的简易步骤:找到目标 —> 了解Python —> 知道变量/算法/解释器 —> 数据类型 —> 列表和元祖 —> 字符串 —> 字典 —> 循环 —> 面向对象 —> 项目实战;

内容知识点
计算机组成原理计算机组成部分、操作系统分类、B/S和C/S架构、理解软件与硬件的区别
Python变量以及开发环境字符串、数字、字典、列表、元祖等
流程控制语句程序的执行顺序,顺序执行、循环执行、选择执行
函数定义函数、调用函数、函数的嵌套、递归函数
文件的基本操作文件的打开、编辑、关闭
面向对象编程类对象、实例对象、定义类、实例化对象
异常处理学会捕捉异常、自定义异常
模块和包理解模块和包的概念并学会使用
飞机大战游戏制作自己独立完成飞机大战游戏

二、Python学习资源

国内学习Python网站:

除了国内的一些学习网站,国外也有一些非常受欢迎的学习网站:

  1. Codecademy (www.codecademy.com)
  2. Udemy (www.udemy.com)
  3. Coursera (www.coursera.org)
  4. edX (www.edx.org)
  5. FreeCodeCamp (www.freecodecamp.org)

还有常用的Python手册中文版地址如下:

  1. Python官方文档:https://docs.python.org/zh-cn/3/
  2. Python教程:https://docs.python.org/zh-cn/3/tutorial/index.html
  3. Python标准库:https://docs.python.org/zh-cn/3/library/index.html
  4. Python语言参考:https://docs.python.org/zh-cn/3/reference/index.html
  5. Django框架:https://docs.djangoproject.com/zh-hans/3.2/
  6. Flask框架:https://dormousehole.readthedocs.io/en/latest/
  7. Tornado框架:http://www.tornadoweb.org/en/stable/
  8. Pyramid框架:https://docs.pylonsproject.org/en/latest/
  9. TensorFlow框架:https://tensorflow.google.cn/do

Python书籍:

  • 《Python编程:从入门到实践》:适合初学者的入门书籍,介绍了Python的基础语法、数据结构、算法等。
  • 《Python核心编程》:适合有一定编程基础的读者,深入介绍了Python的高级特性。
  • Fluent Python》:适合有一定编程经验的读者,介绍了Python的高级特性和最佳实践

三、Python学习经验

自学的话比较重要的就是根据自己的时间,指定学习计划。

要确定每天或者每周的学习时间,并确保在这段时间内专注于自己所定的目标。

分布学习也很重要,从基础开始→完成一个飞机大战即可,从进阶开始→搭建一个web页面即可,循序渐进。

如果你对Python感兴趣,想要学习python,这里给大家分享一份Python全套学习资料,都是我自己学习时整理的,希望可以帮到你,一起加油!

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

1️⃣零基础入门

① 学习路线

对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述

2️⃣国内外Python书籍、文档

① 文档和书籍资料

在这里插入图片描述

3️⃣Python工具包+项目源码合集

①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

4️⃣Python面试题

我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值