还是有一些明显优势的,看表格可能会更清晰一些。
特点 | SQL | Excel | BI工具 | Python |
---|---|---|---|---|
数据查询和过滤 | 强大的查询语言 | 有过滤和排序功能 | 通常有查询功能 | Pandas库提供强大的数据处理能力 |
数据处理和清洗 | 有限的处理能力 | 适用于小规模数据 | 通常提供基本的数据清洗功能 | Pandas库提供高级数据清洗工具 |
数据可视化 | 有限的图表支持 | 丰富的图表和图形 | 提供各种数据可视化工具 | Matplotlib、Seaborn提供定制化图表支持 |
统计分析 | 基本统计函数 | 有一些基础统计功能 | 通常有一些统计工具 | SciPy、Statsmodels提供高级统计分析 |
机器学习和深度学习 | 不适用 | 不适用 | 不适用 | Scikit-learn、TensorFlow、PyTorch等提供机器学习和深度学习支持 |
大数据处理 | 不适用 | 不适用 | BI工具通常适用于大规模数据 | PySpark等提供大规模数据处理框架 |
脚本编写和自动化 | 不适用 | 有宏和脚本功能 | 有一些自动化功能 | 可以编写脚本进行自动化任务 |
开源生态系统 | 闭源 | 闭源 | 闭源 | 开源,丰富的库和工具生态系统 |
灵活性和通用性 | 专注于数据库查询 | 适用于广泛场景 | 适用于特定场景 | 通用编程语言,适用于广泛任务 |
我们来说一些实际应用场景,看看Python的优势在哪里。
假设我们有一个销售数据集,想要构建一个销售预测模型,这时候就可以使用Python,Scikit-learn或其他机器学习库,你可以训练一个预测模型,根据历史销售数据进行预测。这涉及到特征工程、模型训练和评估,这在Python中更为方便。
或者我们电商行业想要分析客户的反馈和评论,从而了解产品的用户满意度。 : 使用NLTK或Spacy等库,你可以进行文本分析和情感分析,以便了解客户对产品的情感倾向。
再比如我们需要做可视化报告,来给领导展示业务关键指标。Matplotlib和Seaborn等库,你可以创建高度定制化的图表和可视化效果,以更好地传达复杂的分析结果。这在BI工具中可能需要更多的配置和调整。
最后,尽管SQL和Excel很强大,但是Python脚本可以让我们编写自动化任务,定期执行数据提取、清晰、分析,以确保数据的及时更新和准确性。
建议大家再学习Python的时候,基础知识边看边练,多多参考Python的中文手册。
资源+课程+经验放下文啦! )
一、Python自学
要在学习Python前明确我们的目标是什么。是为了数据分析?web开发?机器学习?还是什么其他目标。这将会觉得大家的学习路径和重点,可以参考下图了解。
但是不管目标是什么,首先要学的是Python基础知识,包括变量、数据类型、控制流、函数、类等。在理解这些基础知识的基础上,我们才能更好的理解复杂的概念。
Python入门教程:
Python学习的简易步骤:找到目标 —> 了解Python —> 知道变量/算法/解释器 —> 数据类型 —> 列表和元祖 —> 字符串 —> 字典 —> 循环 —> 面向对象 —> 项目实战;
内容 | 知识点 |
---|---|
计算机组成原理 | 计算机组成部分、操作系统分类、B/S和C/S架构、理解软件与硬件的区别 |
Python变量以及开发环境 | 字符串、数字、字典、列表、元祖等 |
流程控制语句 | 程序的执行顺序,顺序执行、循环执行、选择执行 |
函数 | 定义函数、调用函数、函数的嵌套、递归函数 |
文件的基本操作 | 文件的打开、编辑、关闭 |
面向对象编程 | 类对象、实例对象、定义类、实例化对象 |
异常处理 | 学会捕捉异常、自定义异常 |
模块和包 | 理解模块和包的概念并学会使用 |
飞机大战游戏制作 | 自己独立完成飞机大战游戏 |
二、Python学习资源
国内学习Python网站:
- 菜鸟教程(www.runoob.com)
- 极客学院(www.jikexueyuan.com)
- 廖雪峰的官方网站(www.liaoxuefeng.com)
- 博客园(www.cnblogs.com)
- 趣IT官网-互联网求职刷题神器
除了国内的一些学习网站,国外也有一些非常受欢迎的学习网站:
- Codecademy (www.codecademy.com)
- Udemy (www.udemy.com)
- Coursera (www.coursera.org)
- edX (www.edx.org)
- FreeCodeCamp (www.freecodecamp.org)
还有常用的Python手册中文版地址如下:
- Python官方文档:https://docs.python.org/zh-cn/3/
- Python教程:https://docs.python.org/zh-cn/3/tutorial/index.html
- Python标准库:https://docs.python.org/zh-cn/3/library/index.html
- Python语言参考:https://docs.python.org/zh-cn/3/reference/index.html
- Django框架:https://docs.djangoproject.com/zh-hans/3.2/
- Flask框架:https://dormousehole.readthedocs.io/en/latest/
- Tornado框架:http://www.tornadoweb.org/en/stable/
- Pyramid框架:https://docs.pylonsproject.org/en/latest/
- TensorFlow框架:https://tensorflow.google.cn/do
Python书籍:
- 《Python编程:从入门到实践》:适合初学者的入门书籍,介绍了Python的基础语法、数据结构、算法等。
- 《Python核心编程》:适合有一定编程基础的读者,深入介绍了Python的高级特性。
- 《Fluent Python》:适合有一定编程经验的读者,介绍了Python的高级特性和最佳实践。
三、Python学习经验
自学的话比较重要的就是根据自己的时间,指定学习计划。
要确定每天或者每周的学习时间,并确保在这段时间内专注于自己所定的目标。
分布学习也很重要,从基础开始→完成一个飞机大战即可,从进阶开始→搭建一个web页面即可,循序渐进。
如果你对Python感兴趣,想要学习python,这里给大家分享一份Python全套学习资料,都是我自己学习时整理的,希望可以帮到你,一起加油!
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
1️⃣零基础入门
① 学习路线
对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
② 路线对应学习视频
还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~
③练习题
每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
2️⃣国内外Python书籍、文档
① 文档和书籍资料
3️⃣Python工具包+项目源码合集
①Python工具包
学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
②Python实战案例
光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
③Python小游戏源码
如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
4️⃣Python面试题
我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。