3G显存也能跑Stable Diffussion了

3G显存也能跑Stable Diffussion了

之前出了ubuntu的安装教程,想自己笔记本也试下,不得不说很辛酸,昨晚历时3个小时终于跑起来了,显卡都跑满了,但是效果很哇塞哈哈。

个人笔记本配置:

cpu: i7 6700hq

gpu: 1060 3g

先上图,看看我生成的小姐姐:

这是我找了civi上面的一些prompt随机生成的,感兴趣的小伙伴可以自己试试,如果自己的电脑配置可以,那生图效率会更高,分辨率也能更高!

image-20230509125257683

image-20230509125603032

image-20230509130658830

没有加人脸修复,人物细节还是差点。实测生成一张图快的话平均25秒左右。再试试新加的openjourney模型。

img

img

img

img

img

img

感觉跟midjourny效果差不多了,有没有很炸裂!注意这都是随机生成的!,只要给定足够的提示词和反推提示词就行了。不得不说AI进步真的快!下面是安装教程:

windows安装非常方便下面是安装教程:

  1. clone项目并下载依赖
git clone https://ghproxy.com/https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
cd stable-diffusion-webui

3.修改依赖并配置pip源

ps:这时候默认下载的话会很慢,建议pip更换清华源,执行如下命令:

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

修改lanch.py

注意由于网络限制,需要将所有github的地址前面都加上代理前缀,请自行修改

修改如下:

def prepare_environment():
    global skip_install
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117")
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
​
xformers_package = os.environ.get('XFORMERS_PACKAGE', 'xformers==0.0.16rc425')
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://ghproxy.com/https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
clip_package = os.environ.get('CLIP_PACKAGE', "git+https://ghproxy.com/https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1")
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "git+https://ghproxy.com/https://github.com/mlfoundations/open_clip.git@bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b")
​
stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://ghproxy.com/https://github.com/Stability-AI/stablediffusion.git")
taming_transformers_repo = os.environ.get('TAMING_TRANSFORMERS_REPO', "https://ghproxy.com/https://github.com/CompVis/taming-transformers.git")
k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://ghproxy.com/https://github.com/crowsonkb/k-diffusion.git')
codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://ghproxy.com/https://github.com/sczhou/CodeFormer.git')
blip_repo = os.environ.get('BLIP_REPO', 'https://ghproxy.com/https://github.com/salesforce/BLIP.git')

然后运行webuser.bat ,就开始自动安装了。

image-20230509134306574

注意,如果你的机器Gpu内存跟我一样小于6G的话,建议安装xformers并且开启低内存模式。

crtl +c结束刚才的进程。

打开windows cmd窗口。

进入stable venv

image-20230509134813069

可直接在地址栏输入 cmd就进入到这个文件夹了。

然后在cmd命令行运行activate.bat进入python虚拟环境。

执行启动命令

首先cd到stable目录

安装xformers

cd ..
cd ..  #这是为了回到stable目录
pip install -U xformers
#安装完就可以启动了
python launch.py --xformers --medvram

至此,大功告成!

最后启动完如下图所示:

image-20230424165340909

写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

### Stable Diffusion 文本到图像生成概述 Stable Diffusion 是一种强大的文本到图像 (Text-to-image, T2I) 生成模型,能够依据给定的文字描述创建高质量的图片[^1]。此模型基于深度学习技术,在训练过程中学会了如何将语义信息映射至视觉表示。 #### 工作原理 核心在于扩散模型架构,它通过逐步向随机噪声中加入细节来构建最终图像。具体来说,Stable Diffusion 使用类似于 VQ-GAN 的预处理流程,先将原始高分辨率(如512x512像素)的图像压缩成较低维度的空间(例如64x64),从而简化计算复杂度并提高效率[^3]。对于条件控制部分,则采用专门设计的ControlNet模块负责提取输入条件下的特征图谱,并将其转换为目标尺寸用于指导后续合成过程。 #### 实现代码示例 下面给出一段简单的 Python 脚本来展示如何调用 Hugging Face 提供的 `diffusers` 库实现基本的文字转图片功能: ```python from diffusers import StableDiffusionPipeline import torch model_id = "CompVis/stable-diffusion-v1-4" device = "cuda" pipe = StableDiffusionPipeline.from_pretrained(model_id).to(device) prompt = "a photograph of an astronaut riding a horse on mars." image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` 这段脚本会下载指定版本的 Stable Diffusion 预训练权重文件,并根据所提供的提示词生成一张描绘宇航员骑马漫步火星表面的艺术风格照片保存下来。 #### PanFusion 扩展应用 值得注意的是,针对特定场景比如全景观光图制作方面存在的难题——即难以获得足够的配对样本以及不同视角间存在显著差异等问题,研究者们开发出了名为 PanFusion 的改进方案。该方法引入了双重路径结构配合特殊设计的跨视点注意机制(EPPA),有效解决了上述提到的技术瓶颈,使得即使是在缺乏充分标注资料的情况下也能产出令人满意的360°环绕效果作品[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值