训练一次得到多个模型做集成的方法

本文探讨了一种提高集成学习训练效率的方法,称为SNAPSHOT ENSEMBLES,通过一次训练过程产生多个分类器。该方法使用周期性学习率策略,确保每个阶段结束时保存一个snapshot,最终形成集成分类器。实验表明,尽管单个模型的性能可能不如传统训练方法,但集成后的模型在测试损失上表现出色。此外,文章还对比了不同初始化和学习率策略对结果的影响,强调了复杂模型中利用前一阶段模型初始化的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考论文

SNAPSHOT ENSEMBLES: TRAIN 1, GET M FOR FREE

解决的问题

多个分类器集成可以获得超过单个分类器的效果,但集成分类器就要求有多个分类器,在训练速度和测试速度方面不占优势。本文提出的方法可以提高集成学习的训练速度,通过一次训练,获得多个分类器,解决了集成学习训练速度慢的问题。
overview

解决方法

深度学习训练过程中,只有经历足够长的epoch后,test loss才会随着lr的降低而降低,这说明loss空间中存在的局部最小值点是稳定的,这些局部最小值点的模型从不同方面描述了特征空间,可以用于集成学习。本文提出的方法主要有以下两点

  • 周期性学习率策略
    和常规学习率策略不同,本文把整个训练过程平均划分成M个阶段,每个阶段内学习率lr都从一个固定初始值开始,逐步降低。每个阶段结束后都保留一个snapshot,训练结束后一共获得M个snapshot,从后面抽取m个组成集成分类器。如此在一次训练中,获得M个模型,训练速度和常规训练方法一样。
    cycle-lr

  • 利用前一阶段的结果初始化当前阶段模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值