降维算法PCA

该博客介绍了PCA(主成分分析)在数据压缩和降维中的应用。PCA通过保留样本方差最大的特征来最大化信息量。在鸢尾花数据集上展示了PCA的过程,将4维特征降至2维,并通过可视化展示不同类别分布。此外,讨论了如何通过累计解释方差比例选择合适的降维维度,并使用‘mle’自动选择最佳n_components。最后,展示了如何根据信息量占比设定降维目标,例如保留97%的信息。
摘要由CSDN通过智能技术生成

PCA使用样本方差来衡量信息量,方差越大,特征所带的信息量越大

矩阵分解:找出n个新特征向量,让数据能够被压缩到少数特征上并总信息量不损失太多的技术

sklearn.decomposition.PCA(n_component=None,copy=True,svd_solve='auto',tol=0.0,

                                              iterated_power='auto',random_state=None)

n_component 降维后需要的维度,即需要保留的特征数量。

import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
import pandas as pd
iris = load_iris()
y = iris.target
x = iris.data
x.shape

# 作为数组,x是2维
# 作为数据表或特征矩阵,x是4维

pd.DataFrame(x)

 

# 建模 调用PCA
pca = PCA(n_components=2)   # 实例化
pca = pca.fit(x)            # 拟合模型
x_dr = pca.transform(x)     # 获取新矩阵
x_dr

iris.target_names

 

# 可视化
plt.figure()   # 准备画图
plt.scatter(x_dr[y==0,0],x_dr[y==0,1],c="red",label=iris.target_names[0])
# 画散点图
# 取出y=0的第一列的数据
plt.scatter(x_dr[y==1,0],x_dr[y==1,1],c="black",label=iris.target_names[1])
plt.scatter(x_dr[y==2,0],x_dr[y==2,1],c="orange",label=iris.target_names[2])
plt.legend()
plt.title('PCA of IRIS dataset')
plt.show()

 

用for循环做

colors = ['red','blue','green']
for i in [0,1,2]:
    plt.scatter(x_dr[y==i,0],x_dr[y==i,1],alpha=0.7,
                c=colors[i],label=iris.target_names[i])
    # alpha 透明度
plt.legend()
plt.title('PCA of IRIS dataset')
plt.show()

 

 # 查看降维后每个新特征向量上所带信息量的大小(方差大小)

pca.explained_variance_

# 查看降维后每个新特征向量所占的信息量占原始信息数据总信息量的百分比

pca.explained_variance_ratio_

 

pca.explained_variance_ratio_.sum()

 

# n_components中不填写任何值,默认返回min(x.shape),不减少特征个数
# 累计可解释方差贡献率 来选择最好的n_components

pca_line = PCA().fit(x)
pca_line.explained_variance_ratio_

 

import numpy as np
np.cumsum(pca_line.explained_variance_ratio_)

 

pca_line = PCA().fit(x)
plt.plot([1,2,3,4,],np.cumsum(pca_line.explained_variance_ratio_))
plt.xticks([1,2,3,4])
plt.xlabel("number of components after dimension reduction")
plt.ylabel("cumulative explained variance")
plt.show()

 

mle自动取n_components最佳取值 

pca_mle = PCA(n_components="mle")
pca_mle = pca_mle.fit_transform(x)
pca_mle

 

由此可见 n_cimponents取3

按信息量占比选超参数:输入[0,1]之间的浮点数,来代表降维后的总解释性方差占原始数据的信息占比,并且让参数svd_solver=='full'

pca_f = PCA(n_components=0.97,svd_solver="full")
pca_f = pca_f.fit(x)
x_f = pca_f.transform(x)
pca_f.explained_variance_ratio_.sum()

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值