计算几何之向量叉积

1. 叉积定义

       p1 * p2 = det [p1 p2] = x1y2 - x2y1

            若对于原点(0, 0) 来说, 

            (1) 若 result > 0, 则 p1 位于 p2 的顺时针方向;

            (2) 若result < 0, 则 p1 位于 p2 的逆时针方向;  

            (3) 若 result = 0, 则 p1 与 p2 共线。(注意有可能同向或反向,若要判断方向,可用向量点积判断)


            下面图1,表示两个向量的位置关系,阴影部分的面积表示叉积的结果;图2,向量 OP 左上角表示OP 的逆时针方向, 右下角表示顺时针方向, 注意不包括共线部分。



2. 叉积意义

         (1)向量叉积的运算结果是平行四边形的有向面积;

 (2)叉积可以判断2 个 向量的转向关系(顺时针或逆时针);

         (3)对于点集,叉积可以判断点的位置关系;

          (4)线段求交(两两横跨或某个点落在线段上) ,凸包求解;


3. 与叉乘区别

   两个向量叉乘得到一个垂直于这两个它们的向量;

          

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值