1. 叉积定义
p1 * p2 = det [p1 p2] = x1y2 - x2y1
若对于原点(0, 0) 来说,
(1) 若 result > 0, 则 p1 位于 p2 的顺时针方向;
(2) 若result < 0, 则 p1 位于 p2 的逆时针方向;
(3) 若 result = 0, 则 p1 与 p2 共线。(注意有可能同向或反向,若要判断方向,可用向量点积判断)
下面图1,表示两个向量的位置关系,阴影部分的面积表示叉积的结果;图2,向量 OP 左上角表示OP 的逆时针方向, 右下角表示顺时针方向, 注意不包括共线部分。
2. 叉积意义
(1)向量叉积的运算结果是平行四边形的有向面积;
(2)叉积可以判断2 个 向量的转向关系(顺时针或逆时针);
(3)对于点集,叉积可以判断点的位置关系;
(4)线段求交(两两横跨或某个点落在线段上) ,凸包求解;
3. 与叉乘区别
两个向量叉乘得到一个垂直于这两个它们的向量;