计算与认知的物理和形而上学探究
1. 计算概念与认知计算模型概述
在相关研究中,存在着多种不同的计算概念。不过,无论采用何种特定的计算模型,一个关键的实证问题是:该模型是否能在实际思考的大脑的有效动力学中得以体现。像图灵机、冯·诺伊曼计算机、连接主义模型和动力系统理论,都可看作是将认知理解为信息处理这一普遍观点的不同变体。
计算主义通常被视为功能主义的一种形式。功能主义强调的是因果 - 功能关系,而非这些关系的物理实现方式。然而,要使功能主义有实际意义,就必须明确界定所需的因果分析层次。从宏观的天文学层面看,所有人在功能上都是等价的,仅仅是围绕恒星旋转的微小质量体;但如果深入到微观物理层面,完全的因果 - 功能等价就意味着物理上的完全相同,这会导致多重可实现性的丧失。认知的计算模型试图阐明合适的功能分析层次,认为在从天体物理到原子层面的过程中,大脑中存在一个可被恰当地描述为计算的功能层次。
但也有一些批评者认为,认知的计算模型未能提供明确的功能解释。例如,塞尔认为,认为我们能发现某物是计算机的观点是错误的。因为对计算的句法描述总是需要有主体将计算机的某些状态解释为有意义的,物理本身并没有内在的事实能让我们客观地判断某个系统是否在运行特定程序。塞尔甚至声称,几乎任何复杂系统都可以被视为几乎任何计算机程序的实例,比如他背后的墙,由于存在某种分子运动模式与 Wordstar 程序的形式结构同构,所以这堵墙此刻就在运行 Wordstar 程序。如果这堵墙足够大,它甚至可以运行大脑中实现的任何程序。
2. 普特南的论证及其问题
2.1 普特南的论证
普特南认为,只要一个系统有足够多的内部状态,它就能实现任何有限状态自动机。
订阅专栏 解锁全文
88

被折叠的 条评论
为什么被折叠?



