今天是2024年12月01日,星期日,北京,天气晴。
北京这两天逐步回暖了,天气还不错。
今天是2024年最后一个月的第一天,我们讲两个方面的内容,使用大模型进行标书写作的一个简单开源项目,以及再看openai O1进展及LLM-Self-Correction机制。
供各位参考,多思考,多总结,多实践;
一、使用大模型进行标书写作的一个简单开源项目
这个有趣,利用大模型进行标书写作(https://github.com/William-GuoWei/ProposalLLM),根据excel里的需求列表,利用大模型的能力自动生成word版的标书文件,根据其readme,可看到其对应的功能:
根据需求对应表,自动根据产品文档生成点对点应答格式的标书,包括所有小标题及内容,自动生成标题1,2,3格式,自动整理正文、图片、项目符号格式;
完成技术需求偏离对应表,自动填写需求对应表当中点对点应答,格式为“答:全面支持,{大模型根据需求自动生成文本}”,同时填写标书对应的章节号码;
整个的项目核心在于prompt的设置(https://github.com/William-GuoWei/ProposalLLM/blob/main/Generate.py)以及整个实现逻辑的设计:
感兴趣的可以试试,提供的excel和word中有一些模版,可以亲自看看实现机制,整个还是相对粗糙。
当然,作者也写了个博客专门介绍(https://my.oschina.net/SeaTunnel/blog/16513434),更全面些。
二、再看openai O1进展及LLM-Self-Correction机制
当然,目前OpenaiO1这些,以及很多RAG的工作,都会使用Reflection的机制,所以这块的一些技术综合总结,可以看LLM-Self-Correction-Papers,大模型自我纠错相关论文,涵盖内在自我纠错、外部工具辅助纠错、信息检索辅助纠错等, https://github.com/ryokamoi/llm-self-correction-papers,这个主要来自于综述《When Can LLMs Actually Correct Their Own Mistakes? A Critical Survey of Self-Correction of LLMs》(https://arxiv.org/abs/2406.01297)。
其中,再次回顾下对应的openai O1的工作(https://platform.openai.com/docs/guides/reasoning),对应的工作:
1、OpenAI o1 Learning to Reason with LLMs,https://arxiv.org/abs/2409.18486, https://openai.com/index/learning-to-reason-with-llms/
2、Skywork-o1,https://huggingface.co/Skywork,https://huggingface.co/Skywork/Skywork-o1-Open-Llama-3.1-8B
3、LLaVA-CoT,LLaVA-CoT: Let Vision Language Models Reason Step-by-Step,https://arxiv.org/abs/2411.10440
4、Marco-o1, Towards Open Reasoning Models for Open-Ended Solutions,https://arxiv.org/abs/2411.14405
5、QwQ: Reflect Deeply on the Boundaries of the Unknown,https://qwenlm.github.io/blog/qwq-32b-preview/,https://huggingface.co/Qwen/QwQ-32B-Preview
6、Steiner:https://medium.com/@peakji/a-small-step-towards-reproducing-openai-o1-b9a756a00855,https://huggingface.co/collections/peakji/steiner-preview-6712c6987110ce932a44e9a6
7、 DeepSeek-R1-Lite-Preview:https://api-docs.deepseek.com/news/news1120
8、O1 Replication Journey:https://github.com/GAIR-NLP/O1-Journey
实际上,其中最为直接的,就是查看openai-o1在不同任务上的推理prompt,例如可参考https://openai.com/index/learning-to-reason-with-llms/,https://github.com/bradhilton/o1-chain-of-thought/tree/main/examples:
也可以看看为了产生这类cot数据的一些合成方案。例如:g1: Using Llama-3.1 70b on Groq to create o1-like reasoning chains(https://github.com/bklieger-groq/g1)
又如,multi1: Using multiple AI providers to create o1-like reasoning chains(https://github.com/tcsenpai/multi1)
总结
本文主要围绕关于使用大模型进行标书写作、再看openai O1进展及LLM-Self-Correction机制两个方面的内容进行了介绍,其中也存在一些索引,可以帮我们更快速地了解相关更细节进展,感兴趣的可以收藏并按图索骥。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈