转自ACdreamers神的博客:(请戳这里)
定理一:
若是k个两两互质的正整数,,则同余式
(1)
与同余式组
(i=1,2,3,...,k) (2)
等价,并且若用表示对模的解数,T表示(1)式对模m的解数,
则:
所以求多项式的解可以用上述方法,先分解分别求出各个解再合并。
定理二:p是素数,r>=2是整数,是整系数多项式,设是同余方程
的一个解,以表示的导数。
(1)若,则存在整数t,使是同于方程的解。
(2)若,并且,则对于t=0,1,2,3,...,p-1,中的
x都是方程的解。