高次同余方程,二次同余方程学习笔记

写在前面

文章作者实力有限,本文可能有个别错误,如有错误请友好地指出。
高次同余方程就是\(x^a\equiv b(mod\ p)\)
二次同余方程就是\(x^2 \equiv b(mod \ p)\)
我们接下来讨论解这两种方程的方法。
那么有一个问题。既然知道了高次同余方程的解法,就可以直接用解高次同余的方法解二次剩余方程。为什么要单独学二次同余方程呢。
因为我区间加区间修改用的是线段树不是树套树。即问题特殊化之后可以使用一些特殊的方法,这种方法可能会比一般方法高效,简便。

正文

高次同余方程

首先需要知道原根

定义

满足\(a^x\equiv 1(mod \ p)\)的最小的正整数x是a关于模p的,接下来\(a\)的阶表示为\(<a>\)

条件

\(gcd(a,p)=1\),这是显然的。

性质

1\(<a>\mid \varphi(p)\)
证明:
因为\(a^{\varphi(p)}\equiv 1(mod\ p)\)\(a^{<a>}\equiv 1(mod\ p)\)
所以\(a^{\varphi(p)-<a>}\equiv 1(mod\ p)\)
进而得出\(a^{\varphi(p)\ mod \ <a>}\equiv 1(mod\ p)\)
假设\(<a>\)不是\(\varphi(p)\)的约数。
\(\varphi(p)\ mod<a>\neq 0\)
\((\varphi(p)\ mod<a>)\ < \ (<a>)\)\(<a>\)的最小性矛盾,与假设矛盾原命题成立。
证毕。

2:设a关于模p的阶为\(<a>\)\(a^0\)\(a^1\)\(a^2\),...,\(a^{<a>-1}\)两两不同
证明:
假设\(a^x\equiv1(mod\ p)\)\(a^y\equiv 1(mod \ p)\),且\(a^x\equiv a^y(mod\ p)\)\(x<y<<a>\)
\(a^{y-x}\equiv 1(mod \ p)\)\(y-x<<a>\)与阶的最小性矛盾,假设不成立,原命题成立。
证毕。

3:设a关于模p的阶为\(<a>\),则\(a^x\equiv a^y(mod\ p)\)的充要条件是\(x\equiv y(mod\ <a>)\)
两边一直除\(a^{<a>}\)因为\(a^{<a>}\equiv 1(mod\ p)\)所以结论显然。

原根

(因为原根的定义涉及到阶,所以默认互质,又因为原根的性质3,p为质数)

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值