高次同余式的解数和解法

本文探讨了高次同余式的解数定理,阐述了当m1, m2, ..., mk两两互素时,解数与每个模mi下解数的关系。此外,详细介绍了Hensel引理,解释了如何通过该引理求解模p^k的同余方程,并展示了通过穷举法和化简求解具体同余方程的例子。" 132068703,8539703,Flink窗口计算详解:Window Assigners与Triggers,"['Flink', '流处理', '窗口计算', '事件时间', '触发器']
摘要由CSDN通过智能技术生成

索引

(解数)定理1:设 m 1 , m 2 , ⋯   , m k ∈ Z > 0 { {m}_{1}},{ {m}_{2}},\cdots ,{ {m}_{k}}\in { {\mathbb{Z}}_{>0}} m1,m2,,mkZ>0两两互素, m = ∏ i = 1 k m i m=\prod\limits_{i=1}^{k}{ { {m}_{i}}} m=i=1kmi f ( x ) f\left( x \right) f(x)是整系数多项式,则

1-i): f ( x ) ≡ 0     m o d   m 有 解 ⇔ 方 程 组 f ( x ) ≡ 0     m o d   m i ( 1 ≤ i ≤ k ) 有 解 f\left( x \right)\equiv 0\text{ }\bmod m有解\Leftrightarrow 方程组f\left( x \right)\equiv 0\text{ }\bmod { {m}_{i}}\left( 1\le i\le k \right)有解 f(x)0 modmf(x)0 modmi(1ik)

证明

  1. ( ⇒ ) \left( \Rightarrow \right) ()
    ∃ x 0 ,   f ( x 0 ) ≡ 0     m o d   m \exists { {x}_{0}},\text{ }f\left( { {x}_{0}} \right)\equiv 0\text{ }\bmod m x0, f(x0)0 modm,由于 ∀ 1 ≤ i ≤ k ,   m i ∣ m \forall 1\le i\le k,\text{ }\left. { {m}_{i}} \right|m 1ik, mim,因此有
    f ( x 0 ) ≡ 0     m o d   m i ,   ∀ 1 ≤ i ≤ k f\left( { {x}_{0}} \right)\equiv 0\text{ }\bmod { {m}_{i}},\text{ }\forall 1\le i\le k f(x0)0 modmi, 1ik
  2. ( ⇐ ) \left( \Leftarrow \right) ()
    ∃ x 0 ,   ∀ 1 ≤ i ≤ k ,   f ( x 0 ) ≡ 0     m o d   m i \exists { {x}_{0}},\text{ }\forall 1\le i\le k,\text{ }f\left( { {x}_{0}} \right)\equiv 0\text{ }\bmod { {m}_{i}} x0, 1ik, f(x0)0 modmi,则有
    f ( x 0 ) ≡ 0     m o d     l c m ( m 1 , ⋯   , m k ) f\left( { {x}_{0}} \right)\equiv 0\text{ }\bmod \text{ }lcm\left( { {m}_{1}},\cdots ,{ {m}_{k}} \right) f(x0)0 mod lcm(m1,,mk)
    由于 m 1 , ⋯   , m k { {m}_{1}},\cdots ,{ {m}_{k}} m1,,mk两两互素,因此有
    l c m ( m 1 , ⋯   , m k ) = m lcm\left( { {m}_{1}},\cdots ,{ {m}_{k}} \right)=m lcm(m1,,mk)=m
    即有
    f ( x 0 ) ≡ 0     m o d   m f\left( { {x}_{0}} \right)\equiv 0\text{ }\bmod m f(x0)0 modm

1-ii):设 f ( x ) ≡ 0     m o d   m f\left( x \right)\equiv 0\text{ }\bmod m f(x)0 modm T T T   m o d   m \bmod m modm的解,而 ∀ 1 ≤ i ≤ k \forall 1\le i\le k 1ik f ( x ) ≡ 0     m o d   m i f\left( x \right)\equiv 0\text{ }\bmod { {m}_{i}} f(x)0 modmi T i { {T}_{i}} Ti   m o d   m i \bmod { {m}_{i}} modmi的解,则有 T = ∏ i = 1 k T i T=\prod\limits_{i=1}^{k}{ { {T}_{i}}} T=i=1kTi

证明
  对于一个同余方程
f ( x ) ≡ 0     m o d   m f\left( x \right)\equiv 0\text{ }\bmod m f(x)0 modm
m m m进行素因子分解得到
m = p 1 e 1 p 2 e 2 ⋯ p k e k m={ {p}_{1}}^{ { {e}_{1}}}{ {p}_{2}}^{ { {e}_{2}}}\cdots { {p}_{k}}^{ { {e}_{k}}} m=p1e1p2e2pkek
p 1 e 1 , p 2 e 2 , ⋯   , p k e k { {p}_{1}}^{ { {e}_{1}}},{ {p}_{2}}^{ { {e}_{2}}},\cdots ,{ {p}_{k}}^{ { {e}_{k}}} p1e1,p2e2,,pkek两两互素。由定理1-i),问题等价于求解方程组
f ( x ) ≡ 0     m o d   p i e i ,   i = 1 , 2 , ⋯   , k f\left( x \right)\equiv 0\text{ }\bmod { {p}_{i}}^{ { {e}_{i}}},\text{ }i=1,2,\cdots ,k f(x)0 modpiei, i=1,2,,k
f ( x ) ≡ 0     m o d   p i e i f\left( x \right)\equiv 0\text{ }\bmod { {p}_{i}}^{ { {e}_{i}}} f(x)0 modpiei的解集为
S i = { x ≡ b i j i     m o d   m i , j i = 1 , 2 , ⋯   , T i } { {S}_{i}}=\left\{ x\equiv b_{i}^{ { {j}_{i}}}\text{ }\bmod { {m}_{i}},{ {j}_{i}}=1,2,\cdots ,{ {T}_{i}} \right\} Si={ xbiji modmi,ji=1,2,,Ti}
其中 j i { {j}_{i}} ji是作为左上标而非指数。
则问题又等价于求解 ∏ i = 1 k T i \prod\limits_{i=1}^{k}{ { {T}_{i}}} i=1kTi个方程组
{ x ≡ b 1 j 1     m o d   m 1 ,   j 1 ∈ { 1 , 2 , ⋯   , T 1 } x ≡ b 2 j 2     m o d   m 2 , j 2 ∈ { 1 , 2 , ⋯   , T 2 } ⋮ x ≡ b k j k     m o d   m k ,   j k ∈ { 1 , 2 , ⋯   , T k } \left\{ \begin{aligned} & x\equiv b_{1}^{ { {j}_{1}}}\text{ }\bmod { {m}_{1}},\text{ }{ {j}_{1}}\in \left\{ 1,2,\cdots ,{ {T}_{1}} \right\} \\ & x\equiv b_{2}^{ { {j}_{2}}}\text{ }\bmod { {m}_{2}},{ {j}_{2}}\in \left\{ 1,2,\cdots ,{ {T}_{2}} \right\}\\ & \vdots \\ & x\equiv b_{k}^{ { {j}_{k}}}\text{ }\bmod { {m}_{k}},\text{ }{ {j}_{k}}\in \left\{ 1,2,\cdots ,{ {T}_{k}} \right\} \\ \end{aligned} \right. xb1j1 modm1, j1{ 1,2,,T1}xb2j2 modm2,j2{ 1,2,,T2}xbkjk modmk, jk{ 1,2,,Tk}
m = m i M i ,   ∀ i m={ {m}_{i}}{ {M}_{i}},\text{ }\forall i m=miMi, i,并解 M i M i ′ ≡ 1     m o d   m i { {M}_{i}}{ {M}_{i}}'\equiv 1\text{ }\bmod { {m}_{i}} MiMi1 modmi M i ′ { {M}_{i}}' Mi。由孙子定理,最终得到原同余式 f ( x ) ≡ 0     m o d   m f\left( x \right)\equiv 0\text{ }\bmod m f(x)0 modm的一切解为
x ≡ ∑ i = 1 k M i M i ′ b i j i ,   ∀ i ,   ∀ j i ∈ { 1 , 2 , ⋯   , T i } x\equiv \sum\limits_{i=1}^{k}{ { {M}_{i}}{ {M}_{i}}'b_{i}^{ { {j}_{i}}}},\text{ }\forall i,\text{ }\forall { {j}_{i}}\in \left\{ 1,2,\cdots ,{ {T}_{i}} \right\} xi=1kMiMibiji, i, ji{ 1,2,,Ti}
又由博文《孙子定理与首一一元一次同余式组(模数两两互素的情况)》中的第二个定理,若 ∃ ξ i ′ , ξ i ′ ′ ∈ { b i 1 , b i 2 , ⋯   , b i T i }   &   ξ i ′ ≠ ξ i ′ ′ \exists { {\xi }_{i}}',{ {\xi }_{i}}''\in \left\{ b_{i}^{1},b_{i}^{2},\cdots ,b_{i}^{ { {T}_{i}}} \right\}\text{ }\And \text{ }{ {\xi }_{i}}'\ne { {\xi }_{i}}'' ξi,ξi{ bi1,bi2,,biTi} & ξi=ξi,则有
∑ i = 1 k M i M i ′ ξ i ′ ≡ ∑ i = 1 k M i M i ′ ξ i ′ ′     m o d   m \sum\limits_{i=1}^{k}{ { {M}_{i}}{ {M}_{i}}'{ {\xi }_{i}}'}\cancel{\equiv }\sum\limits_{i=1}^{k}{ { {M}_{i}}{ {M}_{i}}'{ {\xi }_{i}}''}\text{ }\bmod m i=1kMiMiξi i=1kMiMiξi modm
因此方程 f ( x ) ≡ 0     m o d   m f\left( x \right)\equiv 0\text{ }\bmod m f(x)0 modm   m o d   m \bmod m modm解个数 T T T满足
T = ∏ i = 1 k T i T=\prod\limits_{i=1}^{k}{ { {T}_{i}}} T=i=1kTi

例题

  1. 使用穷举法求解高次同余式
    f ( x ) ≡ x 4 + 2 x 3 + 8 x + 9 ≡ 0     m o d   35 f\left( x \right)\equiv { {x}^{4}}+2{ {x}^{3}}+8x+9\equiv 0\text{ }\bmod 35 f(x)x4+2x3+8x+90 mod35

      直接使用穷举法代入 x = 0 ,   ± 1 ,   ± 2 ,   ⋯   ,   ± 17 x=0,\text{ }\pm 1,\text{ }\pm 2,\text{ }\cdots ,\text{ }\pm 17 x=0, ±1, ±2, , ±17计算,且模数 35

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值